y, x ಪರಿಹರಿಸಿ
x=-4
y=0
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
y-2x=8
ಮೊದಲನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. ಎರಡೂ ಕಡೆಗಳಿಂದ 2x ಕಳೆಯಿರಿ.
y-2x=8,2y+3x=-12
ಪರ್ಯಾಯವನ್ನು ಬಳಸಿಕೊಂಡು ಸಮೀಕರಣಗಳ ಜೋಡಿಯನ್ನು ಪರಿಹರಿಸಲು, ಮೊದಲು ಚರಾಂಶಗಳ ಒಂದಕ್ಕೆ ಸಮೀಕರಣಗಳ ಒಂದನ್ನು ಪರಿಹರಿಸಿ. ತದನಂತರ ಇತರ ಸಮೀಕರಣದಲ್ಲಿ ಆ ಚರಾಂಶಕ್ಕೆ ಫಲಿತಾಂಶವನ್ನು ಬದಲಿಸಿ.
y-2x=8
ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದನ್ನು ಆರಿಸಿ ಹಾಗೂ ಸಮ ಚಿಹ್ನೆಯ ಎಡಭಾಗದಲ್ಲಿ y ಪ್ರತ್ಯೇಕಿಸುವ ಮೂಲಕ y ಗಾಗಿ ಅದನ್ನು ಪರಿಹರಿಸಿ.
y=2x+8
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 2x ಸೇರಿಸಿ.
2\left(2x+8\right)+3x=-12
ಇತರ ಸಮೀಕರಣ 2y+3x=-12 ನಲ್ಲಿ y ಗಾಗಿ 8+2x ಬದಲಿಸಿ.
4x+16+3x=-12
8+2x ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
7x+16=-12
3x ಗೆ 4x ಸೇರಿಸಿ.
7x=-28
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 16 ಕಳೆಯಿರಿ.
x=-4
7 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
y=2\left(-4\right)+8
y=2x+8 ನಲ್ಲಿ x ಗಾಗಿ -4 ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ y ಪರಿಹರಿಸಬಹುದು.
y=-8+8
-4 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
y=0
-8 ಗೆ 8 ಸೇರಿಸಿ.
y=0,x=-4
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
y-2x=8
ಮೊದಲನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. ಎರಡೂ ಕಡೆಗಳಿಂದ 2x ಕಳೆಯಿರಿ.
y-2x=8,2y+3x=-12
ಸಮೀಕರಣಗಳನ್ನು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಿಸಿ ತದನಂತರ ಸಮೀಕರಣಗಳ ವ್ಯವಸ್ಥೆಯನ್ನು ಪರಿಹರಿಸಲು ಮ್ಯಾಟ್ರಿಸೈಸ್ ಬಳಸಿ.
\left(\begin{matrix}1&-2\\2&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}8\\-12\end{matrix}\right)
ಸಮೀಕರಣಗಳನ್ನು ಮಾತೃಕೆ ರೂಪದಲ್ಲಿ ಬರೆಯಿರಿ.
inverse(\left(\begin{matrix}1&-2\\2&3\end{matrix}\right))\left(\begin{matrix}1&-2\\2&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\2&3\end{matrix}\right))\left(\begin{matrix}8\\-12\end{matrix}\right)
\left(\begin{matrix}1&-2\\2&3\end{matrix}\right) ನ ವಿಲೋಮ ಮಾತೃಕೆ ಮೂಲಕ ಸಮೀಕರಣವನ್ನು ಎಡಕ್ಕೆ ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\2&3\end{matrix}\right))\left(\begin{matrix}8\\-12\end{matrix}\right)
ಮಾತೃಕೆ ಮತ್ತು ಅದರ ವಿಲೋಮದ ವ್ಯುತ್ಪನ್ನವು ಗುರುತು ಮಾತೃಕೆ ಆಗಿದೆ.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\2&3\end{matrix}\right))\left(\begin{matrix}8\\-12\end{matrix}\right)
ಸಮಾನ ಚಿಹ್ನೆಯ ಎಡ ಬದಿಯಲ್ಲಿ ಮಾತೃಕೆಗಳನ್ನು ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-\left(-2\times 2\right)}&-\frac{-2}{3-\left(-2\times 2\right)}\\-\frac{2}{3-\left(-2\times 2\right)}&\frac{1}{3-\left(-2\times 2\right)}\end{matrix}\right)\left(\begin{matrix}8\\-12\end{matrix}\right)
2\times 2 ಮಾತೃಕೆ \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ಗೆ, ವಿಲೋಮ ಮಾತೃಕೆಯು \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ಆಗಿದೆ, ಆದ್ದರಿಂದ ಮಾತೃಕೆ ಸಮೀಕರಣವನ್ನು ಮಾತೃಕೆ ಗುಣಾಕಾರ ಸಮಸ್ಯೆಯಾಗಿ ಮರುಬರೆಯಬಹುದು.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}&\frac{2}{7}\\-\frac{2}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}8\\-12\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}\times 8+\frac{2}{7}\left(-12\right)\\-\frac{2}{7}\times 8+\frac{1}{7}\left(-12\right)\end{matrix}\right)
ಮಾತೃಕೆಗಳನ್ನು ಗುಣಿಸಿ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\-4\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
y=0,x=-4
ಮಾತೃಕೆ ಅಂಶಗಳು y ಮತ್ತು x ಬೇರೆ ಮಾಡಿ.
y-2x=8
ಮೊದಲನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. ಎರಡೂ ಕಡೆಗಳಿಂದ 2x ಕಳೆಯಿರಿ.
y-2x=8,2y+3x=-12
ತೆಗೆದುಹಾಕುವಿಕೆ ಮೂಲಕ ಪರಿಹರಿಸಲು, ಚರಾಂಶಗಳಲ್ಲಿನ ಗುಣಾಂಕಗಳು ಎರಡು ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದೇ ಆಗಿರಬೇಕು ಈ ಮೂಲಕ ಇತರೆಯಿಂದ ಒಂದು ಸಮೀಕರಣವನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ ಚರಾಂಶವನ್ನು ರದ್ದುಗೊಳಿಸಲಾಗುತ್ತದೆ.
2y+2\left(-2\right)x=2\times 8,2y+3x=-12
y ಮತ್ತು 2y ಸಮವಾಗಿ ಮಾಡಲು, ಮೊದಲ ಸಮೀಕರಣದ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು 2 ಎರಡನೇ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು 1 ರಿಂದ ಗುಣಿಸಿ.
2y-4x=16,2y+3x=-12
ಸರಳೀಕೃತಗೊಳಿಸಿ.
2y-2y-4x-3x=16+12
ಸಮ ಚಿಹ್ನೆಯ ಪ್ರತಿ ಬದಿಯಲ್ಲಿ ಪದಗಳಂತಹವುಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ 2y-4x=16 ದಿಂದ 2y+3x=-12 ಕಳೆಯಿರಿ.
-4x-3x=16+12
-2y ಗೆ 2y ಸೇರಿಸಿ. ನಿಯಮಗಳು 2y ಮತ್ತು -2y ರದ್ದುಗೊಳಿಸಲಾಗಿದೆ, ಈ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದಾಗ ಏಕೈಕ ಚರಾಂಶದ ಜೊತೆಗೆ ಸಮೀಕರಣವನ್ನು ಉಳಿಸಿದೆ.
-7x=16+12
-3x ಗೆ -4x ಸೇರಿಸಿ.
-7x=28
12 ಗೆ 16 ಸೇರಿಸಿ.
x=-4
-7 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
2y+3\left(-4\right)=-12
2y+3x=-12 ನಲ್ಲಿ x ಗಾಗಿ -4 ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ y ಪರಿಹರಿಸಬಹುದು.
2y-12=-12
-4 ಅನ್ನು 3 ಬಾರಿ ಗುಣಿಸಿ.
2y=0
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 12 ಸೇರಿಸಿ.
y=0
2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
y=0,x=-4
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}