ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x, z ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

x-29z=15,4x+3z=-2
ಪರ್ಯಾಯವನ್ನು ಬಳಸಿಕೊಂಡು ಸಮೀಕರಣಗಳ ಜೋಡಿಯನ್ನು ಪರಿಹರಿಸಲು, ಮೊದಲು ಚರಾಂಶಗಳ ಒಂದಕ್ಕೆ ಸಮೀಕರಣಗಳ ಒಂದನ್ನು ಪರಿಹರಿಸಿ. ತದನಂತರ ಇತರ ಸಮೀಕರಣದಲ್ಲಿ ಆ ಚರಾಂಶಕ್ಕೆ ಫಲಿತಾಂಶವನ್ನು ಬದಲಿಸಿ.
x-29z=15
ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದನ್ನು ಆರಿಸಿ ಹಾಗೂ ಸಮ ಚಿಹ್ನೆಯ ಎಡಭಾಗದಲ್ಲಿ x ಪ್ರತ್ಯೇಕಿಸುವ ಮೂಲಕ x ಗಾಗಿ ಅದನ್ನು ಪರಿಹರಿಸಿ.
x=29z+15
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 29z ಸೇರಿಸಿ.
4\left(29z+15\right)+3z=-2
ಇತರ ಸಮೀಕರಣ 4x+3z=-2 ನಲ್ಲಿ x ಗಾಗಿ 29z+15 ಬದಲಿಸಿ.
116z+60+3z=-2
29z+15 ಅನ್ನು 4 ಬಾರಿ ಗುಣಿಸಿ.
119z+60=-2
3z ಗೆ 116z ಸೇರಿಸಿ.
119z=-62
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 60 ಕಳೆಯಿರಿ.
z=-\frac{62}{119}
119 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=29\left(-\frac{62}{119}\right)+15
x=29z+15 ನಲ್ಲಿ z ಗಾಗಿ -\frac{62}{119} ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ x ಪರಿಹರಿಸಬಹುದು.
x=-\frac{1798}{119}+15
-\frac{62}{119} ಅನ್ನು 29 ಬಾರಿ ಗುಣಿಸಿ.
x=-\frac{13}{119}
-\frac{1798}{119} ಗೆ 15 ಸೇರಿಸಿ.
x=-\frac{13}{119},z=-\frac{62}{119}
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
x-29z=15,4x+3z=-2
ಸಮೀಕರಣಗಳನ್ನು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಿಸಿ ತದನಂತರ ಸಮೀಕರಣಗಳ ವ್ಯವಸ್ಥೆಯನ್ನು ಪರಿಹರಿಸಲು ಮ್ಯಾಟ್ರಿಸೈಸ್ ಬಳಸಿ.
\left(\begin{matrix}1&-29\\4&3\end{matrix}\right)\left(\begin{matrix}x\\z\end{matrix}\right)=\left(\begin{matrix}15\\-2\end{matrix}\right)
ಸಮೀಕರಣಗಳನ್ನು ಮಾತೃಕೆ ರೂಪದಲ್ಲಿ ಬರೆಯಿರಿ.
inverse(\left(\begin{matrix}1&-29\\4&3\end{matrix}\right))\left(\begin{matrix}1&-29\\4&3\end{matrix}\right)\left(\begin{matrix}x\\z\end{matrix}\right)=inverse(\left(\begin{matrix}1&-29\\4&3\end{matrix}\right))\left(\begin{matrix}15\\-2\end{matrix}\right)
\left(\begin{matrix}1&-29\\4&3\end{matrix}\right) ನ ವಿಲೋಮ ಮಾತೃಕೆ ಮೂಲಕ ಸಮೀಕರಣವನ್ನು ಎಡಕ್ಕೆ ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\z\end{matrix}\right)=inverse(\left(\begin{matrix}1&-29\\4&3\end{matrix}\right))\left(\begin{matrix}15\\-2\end{matrix}\right)
ಮಾತೃಕೆ ಮತ್ತು ಅದರ ವಿಲೋಮದ ವ್ಯುತ್ಪನ್ನವು ಗುರುತು ಮಾತೃಕೆ ಆಗಿದೆ.
\left(\begin{matrix}x\\z\end{matrix}\right)=inverse(\left(\begin{matrix}1&-29\\4&3\end{matrix}\right))\left(\begin{matrix}15\\-2\end{matrix}\right)
ಸಮಾನ ಚಿಹ್ನೆಯ ಎಡ ಬದಿಯಲ್ಲಿ ಮಾತೃಕೆಗಳನ್ನು ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}x\\z\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-\left(-29\times 4\right)}&-\frac{-29}{3-\left(-29\times 4\right)}\\-\frac{4}{3-\left(-29\times 4\right)}&\frac{1}{3-\left(-29\times 4\right)}\end{matrix}\right)\left(\begin{matrix}15\\-2\end{matrix}\right)
2\times 2 ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) ಗೆ; ವಿಲೋಮ ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ಆಗಿದೆ, ಆದ್ದರಿಂದ ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಸಮೀಕರಣವನ್ನು ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಗುಣಾಕಾರ ಸಮಸ್ಯೆಯೆಂದು ಮರುಬರೆಯಬಹುದು.
\left(\begin{matrix}x\\z\end{matrix}\right)=\left(\begin{matrix}\frac{3}{119}&\frac{29}{119}\\-\frac{4}{119}&\frac{1}{119}\end{matrix}\right)\left(\begin{matrix}15\\-2\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
\left(\begin{matrix}x\\z\end{matrix}\right)=\left(\begin{matrix}\frac{3}{119}\times 15+\frac{29}{119}\left(-2\right)\\-\frac{4}{119}\times 15+\frac{1}{119}\left(-2\right)\end{matrix}\right)
ಮಾತೃಕೆಗಳನ್ನು ಗುಣಿಸಿ.
\left(\begin{matrix}x\\z\end{matrix}\right)=\left(\begin{matrix}-\frac{13}{119}\\-\frac{62}{119}\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
x=-\frac{13}{119},z=-\frac{62}{119}
ಮಾತೃಕೆ ಅಂಶಗಳು x ಮತ್ತು z ಬೇರೆ ಮಾಡಿ.
x-29z=15,4x+3z=-2
ತೆಗೆದುಹಾಕುವಿಕೆ ಮೂಲಕ ಪರಿಹರಿಸಲು, ಚರಾಂಶಗಳಲ್ಲಿನ ಗುಣಾಂಕಗಳು ಎರಡು ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದೇ ಆಗಿರಬೇಕು ಈ ಮೂಲಕ ಇತರೆಯಿಂದ ಒಂದು ಸಮೀಕರಣವನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ ಚರಾಂಶವನ್ನು ರದ್ದುಗೊಳಿಸಲಾಗುತ್ತದೆ.
4x+4\left(-29\right)z=4\times 15,4x+3z=-2
x ಮತ್ತು 4x ಸಮವಾಗಿ ಮಾಡಲು, ಮೊದಲ ಸಮೀಕರಣದ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು 4 ಎರಡನೇ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು 1 ರಿಂದ ಗುಣಿಸಿ.
4x-116z=60,4x+3z=-2
ಸರಳೀಕೃತಗೊಳಿಸಿ.
4x-4x-116z-3z=60+2
ಸಮ ಚಿಹ್ನೆಯ ಪ್ರತಿ ಬದಿಯಲ್ಲಿ ಪದಗಳಂತಹವುಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ 4x-116z=60 ದಿಂದ 4x+3z=-2 ಕಳೆಯಿರಿ.
-116z-3z=60+2
-4x ಗೆ 4x ಸೇರಿಸಿ. ನಿಯಮಗಳು 4x ಮತ್ತು -4x ರದ್ದುಗೊಳಿಸಲಾಗಿದೆ, ಈ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದಾಗ ಏಕೈಕ ಚರಾಂಶದ ಜೊತೆಗೆ ಸಮೀಕರಣವನ್ನು ಉಳಿಸಿದೆ.
-119z=60+2
-3z ಗೆ -116z ಸೇರಿಸಿ.
-119z=62
2 ಗೆ 60 ಸೇರಿಸಿ.
z=-\frac{62}{119}
-119 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
4x+3\left(-\frac{62}{119}\right)=-2
4x+3z=-2 ನಲ್ಲಿ z ಗಾಗಿ -\frac{62}{119} ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ x ಪರಿಹರಿಸಬಹುದು.
4x-\frac{186}{119}=-2
-\frac{62}{119} ಅನ್ನು 3 ಬಾರಿ ಗುಣಿಸಿ.
4x=-\frac{52}{119}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{186}{119} ಸೇರಿಸಿ.
x=-\frac{13}{119}
4 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=-\frac{13}{119},z=-\frac{62}{119}
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.