ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
k, b ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

k+b=45,2.5k+b=33
ಪರ್ಯಾಯವನ್ನು ಬಳಸಿಕೊಂಡು ಸಮೀಕರಣಗಳ ಜೋಡಿಯನ್ನು ಪರಿಹರಿಸಲು, ಮೊದಲು ಚರಾಂಶಗಳ ಒಂದಕ್ಕೆ ಸಮೀಕರಣಗಳ ಒಂದನ್ನು ಪರಿಹರಿಸಿ. ತದನಂತರ ಇತರ ಸಮೀಕರಣದಲ್ಲಿ ಆ ಚರಾಂಶಕ್ಕೆ ಫಲಿತಾಂಶವನ್ನು ಬದಲಿಸಿ.
k+b=45
ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದನ್ನು ಆರಿಸಿ ಹಾಗೂ ಸಮ ಚಿಹ್ನೆಯ ಎಡಭಾಗದಲ್ಲಿ k ಪ್ರತ್ಯೇಕಿಸುವ ಮೂಲಕ k ಗಾಗಿ ಅದನ್ನು ಪರಿಹರಿಸಿ.
k=-b+45
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ b ಕಳೆಯಿರಿ.
2.5\left(-b+45\right)+b=33
ಇತರ ಸಮೀಕರಣ 2.5k+b=33 ನಲ್ಲಿ k ಗಾಗಿ -b+45 ಬದಲಿಸಿ.
-2.5b+112.5+b=33
-b+45 ಅನ್ನು 2.5 ಬಾರಿ ಗುಣಿಸಿ.
-1.5b+112.5=33
b ಗೆ -\frac{5b}{2} ಸೇರಿಸಿ.
-1.5b=-79.5
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 112.5 ಕಳೆಯಿರಿ.
b=53
ಭಿನ್ನಾಂಕದ ವ್ಯುತ್ಕ್ರಮದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿದಾಗ ಯಾವುದು ಒಂದೇ ಬರುತ್ತದೆಯೋ, -1.5 ದಿಂದ ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
k=-53+45
k=-b+45 ನಲ್ಲಿ b ಗಾಗಿ 53 ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ k ಪರಿಹರಿಸಬಹುದು.
k=-8
-53 ಗೆ 45 ಸೇರಿಸಿ.
k=-8,b=53
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
k+b=45,2.5k+b=33
ಸಮೀಕರಣಗಳನ್ನು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಿಸಿ ತದನಂತರ ಸಮೀಕರಣಗಳ ವ್ಯವಸ್ಥೆಯನ್ನು ಪರಿಹರಿಸಲು ಮ್ಯಾಟ್ರಿಸೈಸ್ ಬಳಸಿ.
\left(\begin{matrix}1&1\\2.5&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}45\\33\end{matrix}\right)
ಸಮೀಕರಣಗಳನ್ನು ಮಾತೃಕೆ ರೂಪದಲ್ಲಿ ಬರೆಯಿರಿ.
inverse(\left(\begin{matrix}1&1\\2.5&1\end{matrix}\right))\left(\begin{matrix}1&1\\2.5&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2.5&1\end{matrix}\right))\left(\begin{matrix}45\\33\end{matrix}\right)
\left(\begin{matrix}1&1\\2.5&1\end{matrix}\right) ನ ವಿಲೋಮ ಮಾತೃಕೆ ಮೂಲಕ ಸಮೀಕರಣವನ್ನು ಎಡಕ್ಕೆ ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2.5&1\end{matrix}\right))\left(\begin{matrix}45\\33\end{matrix}\right)
ಮಾತೃಕೆ ಮತ್ತು ಅದರ ವಿಲೋಮದ ವ್ಯುತ್ಪನ್ನವು ಗುರುತು ಮಾತೃಕೆ ಆಗಿದೆ.
\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2.5&1\end{matrix}\right))\left(\begin{matrix}45\\33\end{matrix}\right)
ಸಮಾನ ಚಿಹ್ನೆಯ ಎಡ ಬದಿಯಲ್ಲಿ ಮಾತೃಕೆಗಳನ್ನು ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-2.5}&-\frac{1}{1-2.5}\\-\frac{2.5}{1-2.5}&\frac{1}{1-2.5}\end{matrix}\right)\left(\begin{matrix}45\\33\end{matrix}\right)
2\times 2 ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) ಗೆ; ವಿಲೋಮ ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ಆಗಿದೆ, ಆದ್ದರಿಂದ ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಸಮೀಕರಣವನ್ನು ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಗುಣಾಕಾರ ಸಮಸ್ಯೆಯೆಂದು ಮರುಬರೆಯಬಹುದು.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}&\frac{2}{3}\\\frac{5}{3}&-\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}45\\33\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}\times 45+\frac{2}{3}\times 33\\\frac{5}{3}\times 45-\frac{2}{3}\times 33\end{matrix}\right)
ಮಾತೃಕೆಗಳನ್ನು ಗುಣಿಸಿ.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-8\\53\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
k=-8,b=53
ಮಾತೃಕೆ ಅಂಶಗಳು k ಮತ್ತು b ಬೇರೆ ಮಾಡಿ.
k+b=45,2.5k+b=33
ತೆಗೆದುಹಾಕುವಿಕೆ ಮೂಲಕ ಪರಿಹರಿಸಲು, ಚರಾಂಶಗಳಲ್ಲಿನ ಗುಣಾಂಕಗಳು ಎರಡು ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದೇ ಆಗಿರಬೇಕು ಈ ಮೂಲಕ ಇತರೆಯಿಂದ ಒಂದು ಸಮೀಕರಣವನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ ಚರಾಂಶವನ್ನು ರದ್ದುಗೊಳಿಸಲಾಗುತ್ತದೆ.
k-2.5k+b-b=45-33
ಸಮ ಚಿಹ್ನೆಯ ಪ್ರತಿ ಬದಿಯಲ್ಲಿ ಪದಗಳಂತಹವುಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ k+b=45 ದಿಂದ 2.5k+b=33 ಕಳೆಯಿರಿ.
k-2.5k=45-33
-b ಗೆ b ಸೇರಿಸಿ. ನಿಯಮಗಳು b ಮತ್ತು -b ರದ್ದುಗೊಳಿಸಲಾಗಿದೆ, ಈ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದಾಗ ಏಕೈಕ ಚರಾಂಶದ ಜೊತೆಗೆ ಸಮೀಕರಣವನ್ನು ಉಳಿಸಿದೆ.
-1.5k=45-33
-\frac{5k}{2} ಗೆ k ಸೇರಿಸಿ.
-1.5k=12
-33 ಗೆ 45 ಸೇರಿಸಿ.
k=-8
ಭಿನ್ನಾಂಕದ ವ್ಯುತ್ಕ್ರಮದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿದಾಗ ಯಾವುದು ಒಂದೇ ಬರುತ್ತದೆಯೋ, -1.5 ದಿಂದ ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
2.5\left(-8\right)+b=33
2.5k+b=33 ನಲ್ಲಿ k ಗಾಗಿ -8 ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ b ಪರಿಹರಿಸಬಹುದು.
-20+b=33
-8 ಅನ್ನು 2.5 ಬಾರಿ ಗುಣಿಸಿ.
b=53
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 20 ಸೇರಿಸಿ.
k=-8,b=53
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.