ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x, y ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

cx+y=69,2x+y=87
ಪರ್ಯಾಯವನ್ನು ಬಳಸಿಕೊಂಡು ಸಮೀಕರಣಗಳ ಜೋಡಿಯನ್ನು ಪರಿಹರಿಸಲು, ಮೊದಲು ಚರಾಂಶಗಳ ಒಂದಕ್ಕೆ ಸಮೀಕರಣಗಳ ಒಂದನ್ನು ಪರಿಹರಿಸಿ. ತದನಂತರ ಇತರ ಸಮೀಕರಣದಲ್ಲಿ ಆ ಚರಾಂಶಕ್ಕೆ ಫಲಿತಾಂಶವನ್ನು ಬದಲಿಸಿ.
cx+y=69
ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದನ್ನು ಆರಿಸಿ ಹಾಗೂ ಸಮ ಚಿಹ್ನೆಯ ಎಡಭಾಗದಲ್ಲಿ x ಪ್ರತ್ಯೇಕಿಸುವ ಮೂಲಕ x ಗಾಗಿ ಅದನ್ನು ಪರಿಹರಿಸಿ.
cx=-y+69
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ y ಕಳೆಯಿರಿ.
x=\frac{1}{c}\left(-y+69\right)
c ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=\left(-\frac{1}{c}\right)y+\frac{69}{c}
-y+69 ಅನ್ನು \frac{1}{c} ಬಾರಿ ಗುಣಿಸಿ.
2\left(\left(-\frac{1}{c}\right)y+\frac{69}{c}\right)+y=87
ಇತರ ಸಮೀಕರಣ 2x+y=87 ನಲ್ಲಿ x ಗಾಗಿ \frac{69-y}{c} ಬದಲಿಸಿ.
\left(-\frac{2}{c}\right)y+\frac{138}{c}+y=87
\frac{69-y}{c} ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
\frac{c-2}{c}y+\frac{138}{c}=87
y ಗೆ -\frac{2y}{c} ಸೇರಿಸಿ.
\frac{c-2}{c}y=87-\frac{138}{c}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{138}{c} ಕಳೆಯಿರಿ.
y=\frac{3\left(29c-46\right)}{c-2}
\frac{-2+c}{c} ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=\left(-\frac{1}{c}\right)\times \frac{3\left(29c-46\right)}{c-2}+\frac{69}{c}
x=\left(-\frac{1}{c}\right)y+\frac{69}{c} ನಲ್ಲಿ y ಗಾಗಿ \frac{3\left(-46+29c\right)}{-2+c} ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ x ಪರಿಹರಿಸಬಹುದು.
x=-\frac{3\left(29c-46\right)}{c\left(c-2\right)}+\frac{69}{c}
\frac{3\left(-46+29c\right)}{-2+c} ಅನ್ನು -\frac{1}{c} ಬಾರಿ ಗುಣಿಸಿ.
x=-\frac{18}{c-2}
-\frac{3\left(-46+29c\right)}{c\left(-2+c\right)} ಗೆ \frac{69}{c} ಸೇರಿಸಿ.
x=-\frac{18}{c-2},y=\frac{3\left(29c-46\right)}{c-2}
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
cx+y=69,2x+y=87
ಸಮೀಕರಣಗಳನ್ನು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಿಸಿ ತದನಂತರ ಸಮೀಕರಣಗಳ ವ್ಯವಸ್ಥೆಯನ್ನು ಪರಿಹರಿಸಲು ಮ್ಯಾಟ್ರಿಸೈಸ್ ಬಳಸಿ.
\left(\begin{matrix}c&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}69\\87\end{matrix}\right)
ಸಮೀಕರಣಗಳನ್ನು ಮಾತೃಕೆ ರೂಪದಲ್ಲಿ ಬರೆಯಿರಿ.
inverse(\left(\begin{matrix}c&1\\2&1\end{matrix}\right))\left(\begin{matrix}c&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}c&1\\2&1\end{matrix}\right))\left(\begin{matrix}69\\87\end{matrix}\right)
\left(\begin{matrix}c&1\\2&1\end{matrix}\right) ನ ವಿಲೋಮ ಮಾತೃಕೆ ಮೂಲಕ ಸಮೀಕರಣವನ್ನು ಎಡಕ್ಕೆ ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}c&1\\2&1\end{matrix}\right))\left(\begin{matrix}69\\87\end{matrix}\right)
ಮಾತೃಕೆ ಮತ್ತು ಅದರ ವಿಲೋಮದ ವ್ಯುತ್ಪನ್ನವು ಗುರುತು ಮಾತೃಕೆ ಆಗಿದೆ.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}c&1\\2&1\end{matrix}\right))\left(\begin{matrix}69\\87\end{matrix}\right)
ಸಮಾನ ಚಿಹ್ನೆಯ ಎಡ ಬದಿಯಲ್ಲಿ ಮಾತೃಕೆಗಳನ್ನು ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{c-2}&-\frac{1}{c-2}\\-\frac{2}{c-2}&\frac{c}{c-2}\end{matrix}\right)\left(\begin{matrix}69\\87\end{matrix}\right)
2\times 2 ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) ಗೆ; ವಿಲೋಮ ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ಆಗಿದೆ, ಆದ್ದರಿಂದ ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಸಮೀಕರಣವನ್ನು ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಗುಣಾಕಾರ ಸಮಸ್ಯೆಯೆಂದು ಮರುಬರೆಯಬಹುದು.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{c-2}\times 69+\left(-\frac{1}{c-2}\right)\times 87\\\left(-\frac{2}{c-2}\right)\times 69+\frac{c}{c-2}\times 87\end{matrix}\right)
ಮಾತೃಕೆಗಳನ್ನು ಗುಣಿಸಿ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{18}{c-2}\\\frac{3\left(29c-46\right)}{c-2}\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
x=-\frac{18}{c-2},y=\frac{3\left(29c-46\right)}{c-2}
ಮಾತೃಕೆ ಅಂಶಗಳು x ಮತ್ತು y ಬೇರೆ ಮಾಡಿ.
cx+y=69,2x+y=87
ತೆಗೆದುಹಾಕುವಿಕೆ ಮೂಲಕ ಪರಿಹರಿಸಲು, ಚರಾಂಶಗಳಲ್ಲಿನ ಗುಣಾಂಕಗಳು ಎರಡು ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದೇ ಆಗಿರಬೇಕು ಈ ಮೂಲಕ ಇತರೆಯಿಂದ ಒಂದು ಸಮೀಕರಣವನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ ಚರಾಂಶವನ್ನು ರದ್ದುಗೊಳಿಸಲಾಗುತ್ತದೆ.
cx-2x+y-y=69-87
ಸಮ ಚಿಹ್ನೆಯ ಪ್ರತಿ ಬದಿಯಲ್ಲಿ ಪದಗಳಂತಹವುಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ cx+y=69 ದಿಂದ 2x+y=87 ಕಳೆಯಿರಿ.
cx-2x=69-87
-y ಗೆ y ಸೇರಿಸಿ. ನಿಯಮಗಳು y ಮತ್ತು -y ರದ್ದುಗೊಳಿಸಲಾಗಿದೆ, ಈ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದಾಗ ಏಕೈಕ ಚರಾಂಶದ ಜೊತೆಗೆ ಸಮೀಕರಣವನ್ನು ಉಳಿಸಿದೆ.
\left(c-2\right)x=69-87
-2x ಗೆ cx ಸೇರಿಸಿ.
\left(c-2\right)x=-18
-87 ಗೆ 69 ಸೇರಿಸಿ.
x=-\frac{18}{c-2}
c-2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
2\left(-\frac{18}{c-2}\right)+y=87
2x+y=87 ನಲ್ಲಿ x ಗಾಗಿ -\frac{18}{c-2} ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ y ಪರಿಹರಿಸಬಹುದು.
-\frac{36}{c-2}+y=87
-\frac{18}{c-2} ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
y=\frac{3\left(29c-46\right)}{c-2}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{36}{c-2} ಸೇರಿಸಿ.
x=-\frac{18}{c-2},y=\frac{3\left(29c-46\right)}{c-2}
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.