ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
a, x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

a=x\times \frac{6}{5}
ಮೊದಲನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. 16 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{96}{80} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
a-x\times \frac{6}{5}=0
ಎರಡೂ ಕಡೆಗಳಿಂದ x\times \frac{6}{5} ಕಳೆಯಿರಿ.
a-\frac{6}{5}x=0
-\frac{6}{5} ಪಡೆದುಕೊಳ್ಳಲು -1 ಮತ್ತು \frac{6}{5} ಗುಣಿಸಿ.
60-a=x+960
ಎರಡನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. 960 ಪಡೆದುಕೊಳ್ಳಲು 10 ಮತ್ತು 96 ಗುಣಿಸಿ.
60-a-x=960
ಎರಡೂ ಕಡೆಗಳಿಂದ x ಕಳೆಯಿರಿ.
-a-x=960-60
ಎರಡೂ ಕಡೆಗಳಿಂದ 60 ಕಳೆಯಿರಿ.
-a-x=900
900 ಪಡೆದುಕೊಳ್ಳಲು 960 ದಿಂದ 60 ಕಳೆಯಿರಿ.
a-\frac{6}{5}x=0,-a-x=900
ಪರ್ಯಾಯವನ್ನು ಬಳಸಿಕೊಂಡು ಸಮೀಕರಣಗಳ ಜೋಡಿಯನ್ನು ಪರಿಹರಿಸಲು, ಮೊದಲು ಚರಾಂಶಗಳ ಒಂದಕ್ಕೆ ಸಮೀಕರಣಗಳ ಒಂದನ್ನು ಪರಿಹರಿಸಿ. ತದನಂತರ ಇತರ ಸಮೀಕರಣದಲ್ಲಿ ಆ ಚರಾಂಶಕ್ಕೆ ಫಲಿತಾಂಶವನ್ನು ಬದಲಿಸಿ.
a-\frac{6}{5}x=0
ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದನ್ನು ಆರಿಸಿ ಹಾಗೂ ಸಮ ಚಿಹ್ನೆಯ ಎಡಭಾಗದಲ್ಲಿ a ಪ್ರತ್ಯೇಕಿಸುವ ಮೂಲಕ a ಗಾಗಿ ಅದನ್ನು ಪರಿಹರಿಸಿ.
a=\frac{6}{5}x
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{6x}{5} ಸೇರಿಸಿ.
-\frac{6}{5}x-x=900
ಇತರ ಸಮೀಕರಣ -a-x=900 ನಲ್ಲಿ a ಗಾಗಿ \frac{6x}{5} ಬದಲಿಸಿ.
-\frac{11}{5}x=900
-x ಗೆ -\frac{6x}{5} ಸೇರಿಸಿ.
x=-\frac{4500}{11}
ಭಿನ್ನಾಂಕದ ವ್ಯುತ್ಕ್ರಮದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿದಾಗ ಯಾವುದು ಒಂದೇ ಬರುತ್ತದೆಯೋ, -\frac{11}{5} ದಿಂದ ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
a=\frac{6}{5}\left(-\frac{4500}{11}\right)
a=\frac{6}{5}x ನಲ್ಲಿ x ಗಾಗಿ -\frac{4500}{11} ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ a ಪರಿಹರಿಸಬಹುದು.
a=-\frac{5400}{11}
ಸಂಖ್ಯಾಕಾರ ಸಮಯ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದ ಸಮಯ ಛೇದವನ್ನು ಗುಣಿಸುವ ಮೂಲಕ -\frac{4500}{11} ಅನ್ನು \frac{6}{5} ಬಾರಿ ಗುಣಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
a=-\frac{5400}{11},x=-\frac{4500}{11}
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
a=x\times \frac{6}{5}
ಮೊದಲನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. 16 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{96}{80} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
a-x\times \frac{6}{5}=0
ಎರಡೂ ಕಡೆಗಳಿಂದ x\times \frac{6}{5} ಕಳೆಯಿರಿ.
a-\frac{6}{5}x=0
-\frac{6}{5} ಪಡೆದುಕೊಳ್ಳಲು -1 ಮತ್ತು \frac{6}{5} ಗುಣಿಸಿ.
60-a=x+960
ಎರಡನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. 960 ಪಡೆದುಕೊಳ್ಳಲು 10 ಮತ್ತು 96 ಗುಣಿಸಿ.
60-a-x=960
ಎರಡೂ ಕಡೆಗಳಿಂದ x ಕಳೆಯಿರಿ.
-a-x=960-60
ಎರಡೂ ಕಡೆಗಳಿಂದ 60 ಕಳೆಯಿರಿ.
-a-x=900
900 ಪಡೆದುಕೊಳ್ಳಲು 960 ದಿಂದ 60 ಕಳೆಯಿರಿ.
a-\frac{6}{5}x=0,-a-x=900
ಸಮೀಕರಣಗಳನ್ನು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಿಸಿ ತದನಂತರ ಸಮೀಕರಣಗಳ ವ್ಯವಸ್ಥೆಯನ್ನು ಪರಿಹರಿಸಲು ಮ್ಯಾಟ್ರಿಸೈಸ್ ಬಳಸಿ.
\left(\begin{matrix}1&-\frac{6}{5}\\-1&-1\end{matrix}\right)\left(\begin{matrix}a\\x\end{matrix}\right)=\left(\begin{matrix}0\\900\end{matrix}\right)
ಸಮೀಕರಣಗಳನ್ನು ಮಾತೃಕೆ ರೂಪದಲ್ಲಿ ಬರೆಯಿರಿ.
inverse(\left(\begin{matrix}1&-\frac{6}{5}\\-1&-1\end{matrix}\right))\left(\begin{matrix}1&-\frac{6}{5}\\-1&-1\end{matrix}\right)\left(\begin{matrix}a\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{6}{5}\\-1&-1\end{matrix}\right))\left(\begin{matrix}0\\900\end{matrix}\right)
\left(\begin{matrix}1&-\frac{6}{5}\\-1&-1\end{matrix}\right) ನ ವಿಲೋಮ ಮಾತೃಕೆ ಮೂಲಕ ಸಮೀಕರಣವನ್ನು ಎಡಕ್ಕೆ ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{6}{5}\\-1&-1\end{matrix}\right))\left(\begin{matrix}0\\900\end{matrix}\right)
ಮಾತೃಕೆ ಮತ್ತು ಅದರ ವಿಲೋಮದ ವ್ಯುತ್ಪನ್ನವು ಗುರುತು ಮಾತೃಕೆ ಆಗಿದೆ.
\left(\begin{matrix}a\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{6}{5}\\-1&-1\end{matrix}\right))\left(\begin{matrix}0\\900\end{matrix}\right)
ಸಮಾನ ಚಿಹ್ನೆಯ ಎಡ ಬದಿಯಲ್ಲಿ ಮಾತೃಕೆಗಳನ್ನು ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}a\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-\frac{6}{5}\left(-1\right)\right)}&-\frac{-\frac{6}{5}}{-1-\left(-\frac{6}{5}\left(-1\right)\right)}\\-\frac{-1}{-1-\left(-\frac{6}{5}\left(-1\right)\right)}&\frac{1}{-1-\left(-\frac{6}{5}\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}0\\900\end{matrix}\right)
2\times 2 ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) ಗೆ; ವಿಲೋಮ ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ಆಗಿದೆ, ಆದ್ದರಿಂದ ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಸಮೀಕರಣವನ್ನು ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಗುಣಾಕಾರ ಸಮಸ್ಯೆಯೆಂದು ಮರುಬರೆಯಬಹುದು.
\left(\begin{matrix}a\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{11}&-\frac{6}{11}\\-\frac{5}{11}&-\frac{5}{11}\end{matrix}\right)\left(\begin{matrix}0\\900\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
\left(\begin{matrix}a\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{11}\times 900\\-\frac{5}{11}\times 900\end{matrix}\right)
ಮಾತೃಕೆಗಳನ್ನು ಗುಣಿಸಿ.
\left(\begin{matrix}a\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{5400}{11}\\-\frac{4500}{11}\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
a=-\frac{5400}{11},x=-\frac{4500}{11}
ಮಾತೃಕೆ ಅಂಶಗಳು a ಮತ್ತು x ಬೇರೆ ಮಾಡಿ.
a=x\times \frac{6}{5}
ಮೊದಲನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. 16 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{96}{80} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
a-x\times \frac{6}{5}=0
ಎರಡೂ ಕಡೆಗಳಿಂದ x\times \frac{6}{5} ಕಳೆಯಿರಿ.
a-\frac{6}{5}x=0
-\frac{6}{5} ಪಡೆದುಕೊಳ್ಳಲು -1 ಮತ್ತು \frac{6}{5} ಗುಣಿಸಿ.
60-a=x+960
ಎರಡನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. 960 ಪಡೆದುಕೊಳ್ಳಲು 10 ಮತ್ತು 96 ಗುಣಿಸಿ.
60-a-x=960
ಎರಡೂ ಕಡೆಗಳಿಂದ x ಕಳೆಯಿರಿ.
-a-x=960-60
ಎರಡೂ ಕಡೆಗಳಿಂದ 60 ಕಳೆಯಿರಿ.
-a-x=900
900 ಪಡೆದುಕೊಳ್ಳಲು 960 ದಿಂದ 60 ಕಳೆಯಿರಿ.
a-\frac{6}{5}x=0,-a-x=900
ತೆಗೆದುಹಾಕುವಿಕೆ ಮೂಲಕ ಪರಿಹರಿಸಲು, ಚರಾಂಶಗಳಲ್ಲಿನ ಗುಣಾಂಕಗಳು ಎರಡು ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದೇ ಆಗಿರಬೇಕು ಈ ಮೂಲಕ ಇತರೆಯಿಂದ ಒಂದು ಸಮೀಕರಣವನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ ಚರಾಂಶವನ್ನು ರದ್ದುಗೊಳಿಸಲಾಗುತ್ತದೆ.
-a-\left(-\frac{6}{5}x\right)=0,-a-x=900
a ಮತ್ತು -a ಸಮವಾಗಿ ಮಾಡಲು, ಮೊದಲ ಸಮೀಕರಣದ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು -1 ಎರಡನೇ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು 1 ರಿಂದ ಗುಣಿಸಿ.
-a+\frac{6}{5}x=0,-a-x=900
ಸರಳೀಕೃತಗೊಳಿಸಿ.
-a+a+\frac{6}{5}x+x=-900
ಸಮ ಚಿಹ್ನೆಯ ಪ್ರತಿ ಬದಿಯಲ್ಲಿ ಪದಗಳಂತಹವುಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ -a+\frac{6}{5}x=0 ದಿಂದ -a-x=900 ಕಳೆಯಿರಿ.
\frac{6}{5}x+x=-900
a ಗೆ -a ಸೇರಿಸಿ. ನಿಯಮಗಳು -a ಮತ್ತು a ರದ್ದುಗೊಳಿಸಲಾಗಿದೆ, ಈ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದಾಗ ಏಕೈಕ ಚರಾಂಶದ ಜೊತೆಗೆ ಸಮೀಕರಣವನ್ನು ಉಳಿಸಿದೆ.
\frac{11}{5}x=-900
x ಗೆ \frac{6x}{5} ಸೇರಿಸಿ.
x=-\frac{4500}{11}
ಭಿನ್ನಾಂಕದ ವ್ಯುತ್ಕ್ರಮದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿದಾಗ ಯಾವುದು ಒಂದೇ ಬರುತ್ತದೆಯೋ, \frac{11}{5} ದಿಂದ ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
-a-\left(-\frac{4500}{11}\right)=900
-a-x=900 ನಲ್ಲಿ x ಗಾಗಿ -\frac{4500}{11} ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ a ಪರಿಹರಿಸಬಹುದು.
-a=\frac{5400}{11}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{4500}{11} ಕಳೆಯಿರಿ.
a=-\frac{5400}{11}
-1 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
a=-\frac{5400}{11},x=-\frac{4500}{11}
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.