A, B ಪರಿಹರಿಸಿ
A = \frac{9434000}{97} = 97257\frac{71}{97} \approx 97257.731958763
B = \frac{4176000}{97} = 43051\frac{53}{97} \approx 43051.546391753
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
A-0.15B=90800
ಮೊದಲನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. ಎರಡೂ ಕಡೆಗಳಿಂದ 0.15B ಕಳೆಯಿರಿ.
B-0.2A=23600
ಎರಡನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. ಎರಡೂ ಕಡೆಗಳಿಂದ 0.2A ಕಳೆಯಿರಿ.
A-0.15B=90800,-0.2A+B=23600
ಪರ್ಯಾಯವನ್ನು ಬಳಸಿಕೊಂಡು ಸಮೀಕರಣಗಳ ಜೋಡಿಯನ್ನು ಪರಿಹರಿಸಲು, ಮೊದಲು ಚರಾಂಶಗಳ ಒಂದಕ್ಕೆ ಸಮೀಕರಣಗಳ ಒಂದನ್ನು ಪರಿಹರಿಸಿ. ತದನಂತರ ಇತರ ಸಮೀಕರಣದಲ್ಲಿ ಆ ಚರಾಂಶಕ್ಕೆ ಫಲಿತಾಂಶವನ್ನು ಬದಲಿಸಿ.
A-0.15B=90800
ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದನ್ನು ಆರಿಸಿ ಹಾಗೂ ಸಮ ಚಿಹ್ನೆಯ ಎಡಭಾಗದಲ್ಲಿ A ಪ್ರತ್ಯೇಕಿಸುವ ಮೂಲಕ A ಗಾಗಿ ಅದನ್ನು ಪರಿಹರಿಸಿ.
A=0.15B+90800
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{3B}{20} ಸೇರಿಸಿ.
-0.2\left(0.15B+90800\right)+B=23600
ಇತರ ಸಮೀಕರಣ -0.2A+B=23600 ನಲ್ಲಿ A ಗಾಗಿ \frac{3B}{20}+90800 ಬದಲಿಸಿ.
-0.03B-18160+B=23600
\frac{3B}{20}+90800 ಅನ್ನು -0.2 ಬಾರಿ ಗುಣಿಸಿ.
0.97B-18160=23600
B ಗೆ -\frac{3B}{100} ಸೇರಿಸಿ.
0.97B=41760
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 18160 ಸೇರಿಸಿ.
B=\frac{4176000}{97}
ಭಿನ್ನಾಂಕದ ವ್ಯುತ್ಕ್ರಮದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿದಾಗ ಯಾವುದು ಒಂದೇ ಬರುತ್ತದೆಯೋ, 0.97 ದಿಂದ ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
A=0.15\times \frac{4176000}{97}+90800
A=0.15B+90800 ನಲ್ಲಿ B ಗಾಗಿ \frac{4176000}{97} ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ A ಪರಿಹರಿಸಬಹುದು.
A=\frac{626400}{97}+90800
ಸಂಖ್ಯಾಕಾರ ಸಮಯ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದ ಸಮಯ ಛೇದವನ್ನು ಗುಣಿಸುವ ಮೂಲಕ \frac{4176000}{97} ಅನ್ನು 0.15 ಬಾರಿ ಗುಣಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
A=\frac{9434000}{97}
\frac{626400}{97} ಗೆ 90800 ಸೇರಿಸಿ.
A=\frac{9434000}{97},B=\frac{4176000}{97}
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
A-0.15B=90800
ಮೊದಲನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. ಎರಡೂ ಕಡೆಗಳಿಂದ 0.15B ಕಳೆಯಿರಿ.
B-0.2A=23600
ಎರಡನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. ಎರಡೂ ಕಡೆಗಳಿಂದ 0.2A ಕಳೆಯಿರಿ.
A-0.15B=90800,-0.2A+B=23600
ಸಮೀಕರಣಗಳನ್ನು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಿಸಿ ತದನಂತರ ಸಮೀಕರಣಗಳ ವ್ಯವಸ್ಥೆಯನ್ನು ಪರಿಹರಿಸಲು ಮ್ಯಾಟ್ರಿಸೈಸ್ ಬಳಸಿ.
\left(\begin{matrix}1&-0.15\\-0.2&1\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}90800\\23600\end{matrix}\right)
ಸಮೀಕರಣಗಳನ್ನು ಮಾತೃಕೆ ರೂಪದಲ್ಲಿ ಬರೆಯಿರಿ.
inverse(\left(\begin{matrix}1&-0.15\\-0.2&1\end{matrix}\right))\left(\begin{matrix}1&-0.15\\-0.2&1\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}1&-0.15\\-0.2&1\end{matrix}\right))\left(\begin{matrix}90800\\23600\end{matrix}\right)
\left(\begin{matrix}1&-0.15\\-0.2&1\end{matrix}\right) ನ ವಿಲೋಮ ಮಾತೃಕೆ ಮೂಲಕ ಸಮೀಕರಣವನ್ನು ಎಡಕ್ಕೆ ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}1&-0.15\\-0.2&1\end{matrix}\right))\left(\begin{matrix}90800\\23600\end{matrix}\right)
ಮಾತೃಕೆ ಮತ್ತು ಅದರ ವಿಲೋಮದ ವ್ಯುತ್ಪನ್ನವು ಗುರುತು ಮಾತೃಕೆ ಆಗಿದೆ.
\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}1&-0.15\\-0.2&1\end{matrix}\right))\left(\begin{matrix}90800\\23600\end{matrix}\right)
ಸಮಾನ ಚಿಹ್ನೆಯ ಎಡ ಬದಿಯಲ್ಲಿ ಮಾತೃಕೆಗಳನ್ನು ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-0.15\left(-0.2\right)\right)}&-\frac{-0.15}{1-\left(-0.15\left(-0.2\right)\right)}\\-\frac{-0.2}{1-\left(-0.15\left(-0.2\right)\right)}&\frac{1}{1-\left(-0.15\left(-0.2\right)\right)}\end{matrix}\right)\left(\begin{matrix}90800\\23600\end{matrix}\right)
2\times 2 ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) ಗೆ; ವಿಲೋಮ ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ಆಗಿದೆ, ಆದ್ದರಿಂದ ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಸಮೀಕರಣವನ್ನು ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಗುಣಾಕಾರ ಸಮಸ್ಯೆಯೆಂದು ಮರುಬರೆಯಬಹುದು.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}\frac{100}{97}&\frac{15}{97}\\\frac{20}{97}&\frac{100}{97}\end{matrix}\right)\left(\begin{matrix}90800\\23600\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}\frac{100}{97}\times 90800+\frac{15}{97}\times 23600\\\frac{20}{97}\times 90800+\frac{100}{97}\times 23600\end{matrix}\right)
ಮಾತೃಕೆಗಳನ್ನು ಗುಣಿಸಿ.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}\frac{9434000}{97}\\\frac{4176000}{97}\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
A=\frac{9434000}{97},B=\frac{4176000}{97}
ಮಾತೃಕೆ ಅಂಶಗಳು A ಮತ್ತು B ಬೇರೆ ಮಾಡಿ.
A-0.15B=90800
ಮೊದಲನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. ಎರಡೂ ಕಡೆಗಳಿಂದ 0.15B ಕಳೆಯಿರಿ.
B-0.2A=23600
ಎರಡನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. ಎರಡೂ ಕಡೆಗಳಿಂದ 0.2A ಕಳೆಯಿರಿ.
A-0.15B=90800,-0.2A+B=23600
ತೆಗೆದುಹಾಕುವಿಕೆ ಮೂಲಕ ಪರಿಹರಿಸಲು, ಚರಾಂಶಗಳಲ್ಲಿನ ಗುಣಾಂಕಗಳು ಎರಡು ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದೇ ಆಗಿರಬೇಕು ಈ ಮೂಲಕ ಇತರೆಯಿಂದ ಒಂದು ಸಮೀಕರಣವನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ ಚರಾಂಶವನ್ನು ರದ್ದುಗೊಳಿಸಲಾಗುತ್ತದೆ.
-0.2A-0.2\left(-0.15\right)B=-0.2\times 90800,-0.2A+B=23600
A ಮತ್ತು -\frac{A}{5} ಸಮವಾಗಿ ಮಾಡಲು, ಮೊದಲ ಸಮೀಕರಣದ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು -0.2 ಎರಡನೇ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು 1 ರಿಂದ ಗುಣಿಸಿ.
-0.2A+0.03B=-18160,-0.2A+B=23600
ಸರಳೀಕೃತಗೊಳಿಸಿ.
-0.2A+0.2A+0.03B-B=-18160-23600
ಸಮ ಚಿಹ್ನೆಯ ಪ್ರತಿ ಬದಿಯಲ್ಲಿ ಪದಗಳಂತಹವುಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ -0.2A+0.03B=-18160 ದಿಂದ -0.2A+B=23600 ಕಳೆಯಿರಿ.
0.03B-B=-18160-23600
\frac{A}{5} ಗೆ -\frac{A}{5} ಸೇರಿಸಿ. ನಿಯಮಗಳು -\frac{A}{5} ಮತ್ತು \frac{A}{5} ರದ್ದುಗೊಳಿಸಲಾಗಿದೆ, ಈ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದಾಗ ಏಕೈಕ ಚರಾಂಶದ ಜೊತೆಗೆ ಸಮೀಕರಣವನ್ನು ಉಳಿಸಿದೆ.
-0.97B=-18160-23600
-B ಗೆ \frac{3B}{100} ಸೇರಿಸಿ.
-0.97B=-41760
-23600 ಗೆ -18160 ಸೇರಿಸಿ.
B=\frac{4176000}{97}
ಭಿನ್ನಾಂಕದ ವ್ಯುತ್ಕ್ರಮದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿದಾಗ ಯಾವುದು ಒಂದೇ ಬರುತ್ತದೆಯೋ, -0.97 ದಿಂದ ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
-0.2A+\frac{4176000}{97}=23600
-0.2A+B=23600 ನಲ್ಲಿ B ಗಾಗಿ \frac{4176000}{97} ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ A ಪರಿಹರಿಸಬಹುದು.
-0.2A=-\frac{1886800}{97}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{4176000}{97} ಕಳೆಯಿರಿ.
A=\frac{9434000}{97}
-5 ಮೂಲಕ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
A=\frac{9434000}{97},B=\frac{4176000}{97}
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}