x, y ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
\left\{\begin{matrix}x=-\frac{2}{m+6}\text{, }y=-\frac{3}{m+6}\text{, }&m\neq -6\\x=\frac{-2y-1}{3}\text{, }y\in \mathrm{C}\text{, }&m=6\end{matrix}\right.
x, y ಪರಿಹರಿಸಿ
\left\{\begin{matrix}x=-\frac{2}{m+6}\text{, }y=-\frac{3}{m+6}\text{, }&|m|\neq 6\\x=\frac{-2y-1}{3}\text{, }y\in \mathrm{R}\text{, }&m=6\end{matrix}\right.
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
9x+my+3=0,mx+4y+2=0
ಪರ್ಯಾಯವನ್ನು ಬಳಸಿಕೊಂಡು ಸಮೀಕರಣಗಳ ಜೋಡಿಯನ್ನು ಪರಿಹರಿಸಲು, ಮೊದಲು ಚರಾಂಶಗಳ ಒಂದಕ್ಕೆ ಸಮೀಕರಣಗಳ ಒಂದನ್ನು ಪರಿಹರಿಸಿ. ತದನಂತರ ಇತರ ಸಮೀಕರಣದಲ್ಲಿ ಆ ಚರಾಂಶಕ್ಕೆ ಫಲಿತಾಂಶವನ್ನು ಬದಲಿಸಿ.
9x+my+3=0
ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದನ್ನು ಆರಿಸಿ ಹಾಗೂ ಸಮ ಚಿಹ್ನೆಯ ಎಡಭಾಗದಲ್ಲಿ x ಪ್ರತ್ಯೇಕಿಸುವ ಮೂಲಕ x ಗಾಗಿ ಅದನ್ನು ಪರಿಹರಿಸಿ.
9x+my=-3
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 3 ಕಳೆಯಿರಿ.
9x=\left(-m\right)y-3
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ my ಕಳೆಯಿರಿ.
x=\frac{1}{9}\left(\left(-m\right)y-3\right)
9 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=\left(-\frac{m}{9}\right)y-\frac{1}{3}
-my-3 ಅನ್ನು \frac{1}{9} ಬಾರಿ ಗುಣಿಸಿ.
m\left(\left(-\frac{m}{9}\right)y-\frac{1}{3}\right)+4y+2=0
ಇತರ ಸಮೀಕರಣ mx+4y+2=0 ನಲ್ಲಿ x ಗಾಗಿ -\frac{my}{9}-\frac{1}{3} ಬದಲಿಸಿ.
\left(-\frac{m^{2}}{9}\right)y-\frac{m}{3}+4y+2=0
-\frac{my}{9}-\frac{1}{3} ಅನ್ನು m ಬಾರಿ ಗುಣಿಸಿ.
\left(-\frac{m^{2}}{9}+4\right)y-\frac{m}{3}+2=0
4y ಗೆ -\frac{m^{2}y}{9} ಸೇರಿಸಿ.
\left(-\frac{m^{2}}{9}+4\right)y=\frac{m}{3}-2
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ -\frac{m}{3}+2 ಕಳೆಯಿರಿ.
y=-\frac{3}{m+6}
-\frac{m^{2}}{9}+4 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=\left(-\frac{m}{9}\right)\left(-\frac{3}{m+6}\right)-\frac{1}{3}
x=\left(-\frac{m}{9}\right)y-\frac{1}{3} ನಲ್ಲಿ y ಗಾಗಿ -\frac{3}{6+m} ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ x ಪರಿಹರಿಸಬಹುದು.
x=\frac{m}{3\left(m+6\right)}-\frac{1}{3}
-\frac{3}{6+m} ಅನ್ನು -\frac{m}{9} ಬಾರಿ ಗುಣಿಸಿ.
x=-\frac{2}{m+6}
\frac{m}{3\left(6+m\right)} ಗೆ -\frac{1}{3} ಸೇರಿಸಿ.
x=-\frac{2}{m+6},y=-\frac{3}{m+6}
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
9x+my+3=0,mx+4y+2=0
ಸಮೀಕರಣಗಳನ್ನು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಿಸಿ ತದನಂತರ ಸಮೀಕರಣಗಳ ವ್ಯವಸ್ಥೆಯನ್ನು ಪರಿಹರಿಸಲು ಮ್ಯಾಟ್ರಿಸೈಸ್ ಬಳಸಿ.
\left(\begin{matrix}9&m\\m&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\-2\end{matrix}\right)
ಸಮೀಕರಣಗಳನ್ನು ಮಾತೃಕೆ ರೂಪದಲ್ಲಿ ಬರೆಯಿರಿ.
inverse(\left(\begin{matrix}9&m\\m&4\end{matrix}\right))\left(\begin{matrix}9&m\\m&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&m\\m&4\end{matrix}\right))\left(\begin{matrix}-3\\-2\end{matrix}\right)
\left(\begin{matrix}9&m\\m&4\end{matrix}\right) ನ ವಿಲೋಮ ಮಾತೃಕೆ ಮೂಲಕ ಸಮೀಕರಣವನ್ನು ಎಡಕ್ಕೆ ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&m\\m&4\end{matrix}\right))\left(\begin{matrix}-3\\-2\end{matrix}\right)
ಮಾತೃಕೆ ಮತ್ತು ಅದರ ವಿಲೋಮದ ವ್ಯುತ್ಪನ್ನವು ಗುರುತು ಮಾತೃಕೆ ಆಗಿದೆ.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&m\\m&4\end{matrix}\right))\left(\begin{matrix}-3\\-2\end{matrix}\right)
ಸಮಾನ ಚಿಹ್ನೆಯ ಎಡ ಬದಿಯಲ್ಲಿ ಮಾತೃಕೆಗಳನ್ನು ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{9\times 4-mm}&-\frac{m}{9\times 4-mm}\\-\frac{m}{9\times 4-mm}&\frac{9}{9\times 4-mm}\end{matrix}\right)\left(\begin{matrix}-3\\-2\end{matrix}\right)
2\times 2 ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) ಗೆ; ವಿಲೋಮ ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ಆಗಿದೆ, ಆದ್ದರಿಂದ ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಸಮೀಕರಣವನ್ನು ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಗುಣಾಕಾರ ಸಮಸ್ಯೆಯೆಂದು ಮರುಬರೆಯಬಹುದು.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{36-m^{2}}&-\frac{m}{36-m^{2}}\\-\frac{m}{36-m^{2}}&\frac{9}{36-m^{2}}\end{matrix}\right)\left(\begin{matrix}-3\\-2\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{36-m^{2}}\left(-3\right)+\left(-\frac{m}{36-m^{2}}\right)\left(-2\right)\\\left(-\frac{m}{36-m^{2}}\right)\left(-3\right)+\frac{9}{36-m^{2}}\left(-2\right)\end{matrix}\right)
ಮಾತೃಕೆಗಳನ್ನು ಗುಣಿಸಿ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{m+6}\\-\frac{3}{m+6}\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
x=-\frac{2}{m+6},y=-\frac{3}{m+6}
ಮಾತೃಕೆ ಅಂಶಗಳು x ಮತ್ತು y ಬೇರೆ ಮಾಡಿ.
9x+my+3=0,mx+4y+2=0
ತೆಗೆದುಹಾಕುವಿಕೆ ಮೂಲಕ ಪರಿಹರಿಸಲು, ಚರಾಂಶಗಳಲ್ಲಿನ ಗುಣಾಂಕಗಳು ಎರಡು ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದೇ ಆಗಿರಬೇಕು ಈ ಮೂಲಕ ಇತರೆಯಿಂದ ಒಂದು ಸಮೀಕರಣವನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ ಚರಾಂಶವನ್ನು ರದ್ದುಗೊಳಿಸಲಾಗುತ್ತದೆ.
m\times 9x+mmy+m\times 3=0,9mx+9\times 4y+9\times 2=0
9x ಮತ್ತು mx ಸಮವಾಗಿ ಮಾಡಲು, ಮೊದಲ ಸಮೀಕರಣದ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು m ಎರಡನೇ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು 9 ರಿಂದ ಗುಣಿಸಿ.
9mx+m^{2}y+3m=0,9mx+36y+18=0
ಸರಳೀಕೃತಗೊಳಿಸಿ.
9mx+\left(-9m\right)x+m^{2}y-36y+3m-18=0
ಸಮ ಚಿಹ್ನೆಯ ಪ್ರತಿ ಬದಿಯಲ್ಲಿ ಪದಗಳಂತಹವುಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ 9mx+m^{2}y+3m=0 ದಿಂದ 9mx+36y+18=0 ಕಳೆಯಿರಿ.
m^{2}y-36y+3m-18=0
-9mx ಗೆ 9mx ಸೇರಿಸಿ. ನಿಯಮಗಳು 9mx ಮತ್ತು -9mx ರದ್ದುಗೊಳಿಸಲಾಗಿದೆ, ಈ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದಾಗ ಏಕೈಕ ಚರಾಂಶದ ಜೊತೆಗೆ ಸಮೀಕರಣವನ್ನು ಉಳಿಸಿದೆ.
\left(m^{2}-36\right)y+3m-18=0
-36y ಗೆ m^{2}y ಸೇರಿಸಿ.
\left(m^{2}-36\right)y=18-3m
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ -18+3m ಕಳೆಯಿರಿ.
y=-\frac{3}{m+6}
m^{2}-36 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
mx+4\left(-\frac{3}{m+6}\right)+2=0
mx+4y+2=0 ನಲ್ಲಿ y ಗಾಗಿ -\frac{3}{6+m} ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ x ಪರಿಹರಿಸಬಹುದು.
mx-\frac{12}{m+6}+2=0
-\frac{3}{6+m} ಅನ್ನು 4 ಬಾರಿ ಗುಣಿಸಿ.
mx+\frac{2m}{m+6}=0
2 ಗೆ -\frac{12}{6+m} ಸೇರಿಸಿ.
mx=-\frac{2m}{m+6}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{2m}{6+m} ಕಳೆಯಿರಿ.
x=-\frac{2}{m+6}
m ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=-\frac{2}{m+6},y=-\frac{3}{m+6}
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
9x+my+3=0,mx+4y+2=0
ಪರ್ಯಾಯವನ್ನು ಬಳಸಿಕೊಂಡು ಸಮೀಕರಣಗಳ ಜೋಡಿಯನ್ನು ಪರಿಹರಿಸಲು, ಮೊದಲು ಚರಾಂಶಗಳ ಒಂದಕ್ಕೆ ಸಮೀಕರಣಗಳ ಒಂದನ್ನು ಪರಿಹರಿಸಿ. ತದನಂತರ ಇತರ ಸಮೀಕರಣದಲ್ಲಿ ಆ ಚರಾಂಶಕ್ಕೆ ಫಲಿತಾಂಶವನ್ನು ಬದಲಿಸಿ.
9x+my+3=0
ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದನ್ನು ಆರಿಸಿ ಹಾಗೂ ಸಮ ಚಿಹ್ನೆಯ ಎಡಭಾಗದಲ್ಲಿ x ಪ್ರತ್ಯೇಕಿಸುವ ಮೂಲಕ x ಗಾಗಿ ಅದನ್ನು ಪರಿಹರಿಸಿ.
9x+my=-3
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 3 ಕಳೆಯಿರಿ.
9x=\left(-m\right)y-3
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ my ಕಳೆಯಿರಿ.
x=\frac{1}{9}\left(\left(-m\right)y-3\right)
9 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=\left(-\frac{m}{9}\right)y-\frac{1}{3}
-my-3 ಅನ್ನು \frac{1}{9} ಬಾರಿ ಗುಣಿಸಿ.
m\left(\left(-\frac{m}{9}\right)y-\frac{1}{3}\right)+4y+2=0
ಇತರ ಸಮೀಕರಣ mx+4y+2=0 ನಲ್ಲಿ x ಗಾಗಿ -\frac{my}{9}-\frac{1}{3} ಬದಲಿಸಿ.
\left(-\frac{m^{2}}{9}\right)y-\frac{m}{3}+4y+2=0
-\frac{my}{9}-\frac{1}{3} ಅನ್ನು m ಬಾರಿ ಗುಣಿಸಿ.
\left(-\frac{m^{2}}{9}+4\right)y-\frac{m}{3}+2=0
4y ಗೆ -\frac{m^{2}y}{9} ಸೇರಿಸಿ.
\left(-\frac{m^{2}}{9}+4\right)y=\frac{m}{3}-2
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ -\frac{m}{3}+2 ಕಳೆಯಿರಿ.
y=-\frac{3}{m+6}
-\frac{m^{2}}{9}+4 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=\left(-\frac{m}{9}\right)\left(-\frac{3}{m+6}\right)-\frac{1}{3}
x=\left(-\frac{m}{9}\right)y-\frac{1}{3} ನಲ್ಲಿ y ಗಾಗಿ -\frac{3}{6+m} ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ x ಪರಿಹರಿಸಬಹುದು.
x=\frac{m}{3\left(m+6\right)}-\frac{1}{3}
-\frac{3}{6+m} ಅನ್ನು -\frac{m}{9} ಬಾರಿ ಗುಣಿಸಿ.
x=-\frac{2}{m+6}
\frac{m}{3\left(6+m\right)} ಗೆ -\frac{1}{3} ಸೇರಿಸಿ.
x=-\frac{2}{m+6},y=-\frac{3}{m+6}
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
9x+my+3=0,mx+4y+2=0
ಸಮೀಕರಣಗಳನ್ನು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಿಸಿ ತದನಂತರ ಸಮೀಕರಣಗಳ ವ್ಯವಸ್ಥೆಯನ್ನು ಪರಿಹರಿಸಲು ಮ್ಯಾಟ್ರಿಸೈಸ್ ಬಳಸಿ.
\left(\begin{matrix}9&m\\m&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\-2\end{matrix}\right)
ಸಮೀಕರಣಗಳನ್ನು ಮಾತೃಕೆ ರೂಪದಲ್ಲಿ ಬರೆಯಿರಿ.
inverse(\left(\begin{matrix}9&m\\m&4\end{matrix}\right))\left(\begin{matrix}9&m\\m&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&m\\m&4\end{matrix}\right))\left(\begin{matrix}-3\\-2\end{matrix}\right)
\left(\begin{matrix}9&m\\m&4\end{matrix}\right) ನ ವಿಲೋಮ ಮಾತೃಕೆ ಮೂಲಕ ಸಮೀಕರಣವನ್ನು ಎಡಕ್ಕೆ ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&m\\m&4\end{matrix}\right))\left(\begin{matrix}-3\\-2\end{matrix}\right)
ಮಾತೃಕೆ ಮತ್ತು ಅದರ ವಿಲೋಮದ ವ್ಯುತ್ಪನ್ನವು ಗುರುತು ಮಾತೃಕೆ ಆಗಿದೆ.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&m\\m&4\end{matrix}\right))\left(\begin{matrix}-3\\-2\end{matrix}\right)
ಸಮಾನ ಚಿಹ್ನೆಯ ಎಡ ಬದಿಯಲ್ಲಿ ಮಾತೃಕೆಗಳನ್ನು ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{9\times 4-mm}&-\frac{m}{9\times 4-mm}\\-\frac{m}{9\times 4-mm}&\frac{9}{9\times 4-mm}\end{matrix}\right)\left(\begin{matrix}-3\\-2\end{matrix}\right)
2\times 2 ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) ಗೆ; ವಿಲೋಮ ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ಆಗಿದೆ, ಆದ್ದರಿಂದ ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಸಮೀಕರಣವನ್ನು ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಗುಣಾಕಾರ ಸಮಸ್ಯೆಯೆಂದು ಮರುಬರೆಯಬಹುದು.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{36-m^{2}}&-\frac{m}{36-m^{2}}\\-\frac{m}{36-m^{2}}&\frac{9}{36-m^{2}}\end{matrix}\right)\left(\begin{matrix}-3\\-2\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{36-m^{2}}\left(-3\right)+\left(-\frac{m}{36-m^{2}}\right)\left(-2\right)\\\left(-\frac{m}{36-m^{2}}\right)\left(-3\right)+\frac{9}{36-m^{2}}\left(-2\right)\end{matrix}\right)
ಮಾತೃಕೆಗಳನ್ನು ಗುಣಿಸಿ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{m+6}\\-\frac{3}{m+6}\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
x=-\frac{2}{m+6},y=-\frac{3}{m+6}
ಮಾತೃಕೆ ಅಂಶಗಳು x ಮತ್ತು y ಬೇರೆ ಮಾಡಿ.
9x+my+3=0,mx+4y+2=0
ತೆಗೆದುಹಾಕುವಿಕೆ ಮೂಲಕ ಪರಿಹರಿಸಲು, ಚರಾಂಶಗಳಲ್ಲಿನ ಗುಣಾಂಕಗಳು ಎರಡು ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದೇ ಆಗಿರಬೇಕು ಈ ಮೂಲಕ ಇತರೆಯಿಂದ ಒಂದು ಸಮೀಕರಣವನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ ಚರಾಂಶವನ್ನು ರದ್ದುಗೊಳಿಸಲಾಗುತ್ತದೆ.
m\times 9x+mmy+m\times 3=0,9mx+9\times 4y+9\times 2=0
9x ಮತ್ತು mx ಸಮವಾಗಿ ಮಾಡಲು, ಮೊದಲ ಸಮೀಕರಣದ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು m ಎರಡನೇ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು 9 ರಿಂದ ಗುಣಿಸಿ.
9mx+m^{2}y+3m=0,9mx+36y+18=0
ಸರಳೀಕೃತಗೊಳಿಸಿ.
9mx+\left(-9m\right)x+m^{2}y-36y+3m-18=0
ಸಮ ಚಿಹ್ನೆಯ ಪ್ರತಿ ಬದಿಯಲ್ಲಿ ಪದಗಳಂತಹವುಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ 9mx+m^{2}y+3m=0 ದಿಂದ 9mx+36y+18=0 ಕಳೆಯಿರಿ.
m^{2}y-36y+3m-18=0
-9mx ಗೆ 9mx ಸೇರಿಸಿ. ನಿಯಮಗಳು 9mx ಮತ್ತು -9mx ರದ್ದುಗೊಳಿಸಲಾಗಿದೆ, ಈ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದಾಗ ಏಕೈಕ ಚರಾಂಶದ ಜೊತೆಗೆ ಸಮೀಕರಣವನ್ನು ಉಳಿಸಿದೆ.
\left(m^{2}-36\right)y+3m-18=0
-36y ಗೆ m^{2}y ಸೇರಿಸಿ.
\left(m^{2}-36\right)y=18-3m
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ -18+3m ಕಳೆಯಿರಿ.
y=-\frac{3}{m+6}
m^{2}-36 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
mx+4\left(-\frac{3}{m+6}\right)+2=0
mx+4y+2=0 ನಲ್ಲಿ y ಗಾಗಿ -\frac{3}{6+m} ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ x ಪರಿಹರಿಸಬಹುದು.
mx-\frac{12}{m+6}+2=0
-\frac{3}{6+m} ಅನ್ನು 4 ಬಾರಿ ಗುಣಿಸಿ.
mx+\frac{2m}{m+6}=0
2 ಗೆ -\frac{12}{6+m} ಸೇರಿಸಿ.
mx=-\frac{2m}{m+6}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{2m}{6+m} ಕಳೆಯಿರಿ.
x=-\frac{2}{m+6}
m ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=-\frac{2}{m+6},y=-\frac{3}{m+6}
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}