ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x, y ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

40x+30y=500,60x+15y=600
ಪರ್ಯಾಯವನ್ನು ಬಳಸಿಕೊಂಡು ಸಮೀಕರಣಗಳ ಜೋಡಿಯನ್ನು ಪರಿಹರಿಸಲು, ಮೊದಲು ಚರಾಂಶಗಳ ಒಂದಕ್ಕೆ ಸಮೀಕರಣಗಳ ಒಂದನ್ನು ಪರಿಹರಿಸಿ. ತದನಂತರ ಇತರ ಸಮೀಕರಣದಲ್ಲಿ ಆ ಚರಾಂಶಕ್ಕೆ ಫಲಿತಾಂಶವನ್ನು ಬದಲಿಸಿ.
40x+30y=500
ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದನ್ನು ಆರಿಸಿ ಹಾಗೂ ಸಮ ಚಿಹ್ನೆಯ ಎಡಭಾಗದಲ್ಲಿ x ಪ್ರತ್ಯೇಕಿಸುವ ಮೂಲಕ x ಗಾಗಿ ಅದನ್ನು ಪರಿಹರಿಸಿ.
40x=-30y+500
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 30y ಕಳೆಯಿರಿ.
x=\frac{1}{40}\left(-30y+500\right)
40 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=-\frac{3}{4}y+\frac{25}{2}
-30y+500 ಅನ್ನು \frac{1}{40} ಬಾರಿ ಗುಣಿಸಿ.
60\left(-\frac{3}{4}y+\frac{25}{2}\right)+15y=600
ಇತರ ಸಮೀಕರಣ 60x+15y=600 ನಲ್ಲಿ x ಗಾಗಿ -\frac{3y}{4}+\frac{25}{2} ಬದಲಿಸಿ.
-45y+750+15y=600
-\frac{3y}{4}+\frac{25}{2} ಅನ್ನು 60 ಬಾರಿ ಗುಣಿಸಿ.
-30y+750=600
15y ಗೆ -45y ಸೇರಿಸಿ.
-30y=-150
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 750 ಕಳೆಯಿರಿ.
y=5
-30 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=-\frac{3}{4}\times 5+\frac{25}{2}
x=-\frac{3}{4}y+\frac{25}{2} ನಲ್ಲಿ y ಗಾಗಿ 5 ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ x ಪರಿಹರಿಸಬಹುದು.
x=-\frac{15}{4}+\frac{25}{2}
5 ಅನ್ನು -\frac{3}{4} ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{35}{4}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ -\frac{15}{4} ಗೆ \frac{25}{2} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
x=\frac{35}{4},y=5
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
40x+30y=500,60x+15y=600
ಸಮೀಕರಣಗಳನ್ನು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಿಸಿ ತದನಂತರ ಸಮೀಕರಣಗಳ ವ್ಯವಸ್ಥೆಯನ್ನು ಪರಿಹರಿಸಲು ಮ್ಯಾಟ್ರಿಸೈಸ್ ಬಳಸಿ.
\left(\begin{matrix}40&30\\60&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}500\\600\end{matrix}\right)
ಸಮೀಕರಣಗಳನ್ನು ಮಾತೃಕೆ ರೂಪದಲ್ಲಿ ಬರೆಯಿರಿ.
inverse(\left(\begin{matrix}40&30\\60&15\end{matrix}\right))\left(\begin{matrix}40&30\\60&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}40&30\\60&15\end{matrix}\right))\left(\begin{matrix}500\\600\end{matrix}\right)
\left(\begin{matrix}40&30\\60&15\end{matrix}\right) ನ ವಿಲೋಮ ಮಾತೃಕೆ ಮೂಲಕ ಸಮೀಕರಣವನ್ನು ಎಡಕ್ಕೆ ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}40&30\\60&15\end{matrix}\right))\left(\begin{matrix}500\\600\end{matrix}\right)
ಮಾತೃಕೆ ಮತ್ತು ಅದರ ವಿಲೋಮದ ವ್ಯುತ್ಪನ್ನವು ಗುರುತು ಮಾತೃಕೆ ಆಗಿದೆ.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}40&30\\60&15\end{matrix}\right))\left(\begin{matrix}500\\600\end{matrix}\right)
ಸಮಾನ ಚಿಹ್ನೆಯ ಎಡ ಬದಿಯಲ್ಲಿ ಮಾತೃಕೆಗಳನ್ನು ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{40\times 15-30\times 60}&-\frac{30}{40\times 15-30\times 60}\\-\frac{60}{40\times 15-30\times 60}&\frac{40}{40\times 15-30\times 60}\end{matrix}\right)\left(\begin{matrix}500\\600\end{matrix}\right)
2\times 2 ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) ಗೆ; ವಿಲೋಮ ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ಆಗಿದೆ, ಆದ್ದರಿಂದ ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಸಮೀಕರಣವನ್ನು ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಗುಣಾಕಾರ ಸಮಸ್ಯೆಯೆಂದು ಮರುಬರೆಯಬಹುದು.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{80}&\frac{1}{40}\\\frac{1}{20}&-\frac{1}{30}\end{matrix}\right)\left(\begin{matrix}500\\600\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{80}\times 500+\frac{1}{40}\times 600\\\frac{1}{20}\times 500-\frac{1}{30}\times 600\end{matrix}\right)
ಮಾತೃಕೆಗಳನ್ನು ಗುಣಿಸಿ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{35}{4}\\5\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
x=\frac{35}{4},y=5
ಮಾತೃಕೆ ಅಂಶಗಳು x ಮತ್ತು y ಬೇರೆ ಮಾಡಿ.
40x+30y=500,60x+15y=600
ತೆಗೆದುಹಾಕುವಿಕೆ ಮೂಲಕ ಪರಿಹರಿಸಲು, ಚರಾಂಶಗಳಲ್ಲಿನ ಗುಣಾಂಕಗಳು ಎರಡು ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದೇ ಆಗಿರಬೇಕು ಈ ಮೂಲಕ ಇತರೆಯಿಂದ ಒಂದು ಸಮೀಕರಣವನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ ಚರಾಂಶವನ್ನು ರದ್ದುಗೊಳಿಸಲಾಗುತ್ತದೆ.
60\times 40x+60\times 30y=60\times 500,40\times 60x+40\times 15y=40\times 600
40x ಮತ್ತು 60x ಸಮವಾಗಿ ಮಾಡಲು, ಮೊದಲ ಸಮೀಕರಣದ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು 60 ಎರಡನೇ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು 40 ರಿಂದ ಗುಣಿಸಿ.
2400x+1800y=30000,2400x+600y=24000
ಸರಳೀಕೃತಗೊಳಿಸಿ.
2400x-2400x+1800y-600y=30000-24000
ಸಮ ಚಿಹ್ನೆಯ ಪ್ರತಿ ಬದಿಯಲ್ಲಿ ಪದಗಳಂತಹವುಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ 2400x+1800y=30000 ದಿಂದ 2400x+600y=24000 ಕಳೆಯಿರಿ.
1800y-600y=30000-24000
-2400x ಗೆ 2400x ಸೇರಿಸಿ. ನಿಯಮಗಳು 2400x ಮತ್ತು -2400x ರದ್ದುಗೊಳಿಸಲಾಗಿದೆ, ಈ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದಾಗ ಏಕೈಕ ಚರಾಂಶದ ಜೊತೆಗೆ ಸಮೀಕರಣವನ್ನು ಉಳಿಸಿದೆ.
1200y=30000-24000
-600y ಗೆ 1800y ಸೇರಿಸಿ.
1200y=6000
-24000 ಗೆ 30000 ಸೇರಿಸಿ.
y=5
1200 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
60x+15\times 5=600
60x+15y=600 ನಲ್ಲಿ y ಗಾಗಿ 5 ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ x ಪರಿಹರಿಸಬಹುದು.
60x+75=600
5 ಅನ್ನು 15 ಬಾರಿ ಗುಣಿಸಿ.
60x=525
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 75 ಕಳೆಯಿರಿ.
x=\frac{35}{4}
60 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=\frac{35}{4},y=5
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.