ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x, y ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

3x-2y=2,5x-5y=10
ಪರ್ಯಾಯವನ್ನು ಬಳಸಿಕೊಂಡು ಸಮೀಕರಣಗಳ ಜೋಡಿಯನ್ನು ಪರಿಹರಿಸಲು, ಮೊದಲು ಚರಾಂಶಗಳ ಒಂದಕ್ಕೆ ಸಮೀಕರಣಗಳ ಒಂದನ್ನು ಪರಿಹರಿಸಿ. ತದನಂತರ ಇತರ ಸಮೀಕರಣದಲ್ಲಿ ಆ ಚರಾಂಶಕ್ಕೆ ಫಲಿತಾಂಶವನ್ನು ಬದಲಿಸಿ.
3x-2y=2
ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದನ್ನು ಆರಿಸಿ ಹಾಗೂ ಸಮ ಚಿಹ್ನೆಯ ಎಡಭಾಗದಲ್ಲಿ x ಪ್ರತ್ಯೇಕಿಸುವ ಮೂಲಕ x ಗಾಗಿ ಅದನ್ನು ಪರಿಹರಿಸಿ.
3x=2y+2
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 2y ಸೇರಿಸಿ.
x=\frac{1}{3}\left(2y+2\right)
3 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=\frac{2}{3}y+\frac{2}{3}
2+2y ಅನ್ನು \frac{1}{3} ಬಾರಿ ಗುಣಿಸಿ.
5\left(\frac{2}{3}y+\frac{2}{3}\right)-5y=10
ಇತರ ಸಮೀಕರಣ 5x-5y=10 ನಲ್ಲಿ x ಗಾಗಿ \frac{2+2y}{3} ಬದಲಿಸಿ.
\frac{10}{3}y+\frac{10}{3}-5y=10
\frac{2+2y}{3} ಅನ್ನು 5 ಬಾರಿ ಗುಣಿಸಿ.
-\frac{5}{3}y+\frac{10}{3}=10
-5y ಗೆ \frac{10y}{3} ಸೇರಿಸಿ.
-\frac{5}{3}y=\frac{20}{3}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{10}{3} ಕಳೆಯಿರಿ.
y=-4
ಭಿನ್ನಾಂಕದ ವ್ಯುತ್ಕ್ರಮದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿದಾಗ ಯಾವುದು ಒಂದೇ ಬರುತ್ತದೆಯೋ, -\frac{5}{3} ದಿಂದ ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=\frac{2}{3}\left(-4\right)+\frac{2}{3}
x=\frac{2}{3}y+\frac{2}{3} ನಲ್ಲಿ y ಗಾಗಿ -4 ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ x ಪರಿಹರಿಸಬಹುದು.
x=\frac{-8+2}{3}
-4 ಅನ್ನು \frac{2}{3} ಬಾರಿ ಗುಣಿಸಿ.
x=-2
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ -\frac{8}{3} ಗೆ \frac{2}{3} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
x=-2,y=-4
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
3x-2y=2,5x-5y=10
ಸಮೀಕರಣಗಳನ್ನು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಿಸಿ ತದನಂತರ ಸಮೀಕರಣಗಳ ವ್ಯವಸ್ಥೆಯನ್ನು ಪರಿಹರಿಸಲು ಮ್ಯಾಟ್ರಿಸೈಸ್ ಬಳಸಿ.
\left(\begin{matrix}3&-2\\5&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\10\end{matrix}\right)
ಸಮೀಕರಣಗಳನ್ನು ಮಾತೃಕೆ ರೂಪದಲ್ಲಿ ಬರೆಯಿರಿ.
inverse(\left(\begin{matrix}3&-2\\5&-5\end{matrix}\right))\left(\begin{matrix}3&-2\\5&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\5&-5\end{matrix}\right))\left(\begin{matrix}2\\10\end{matrix}\right)
\left(\begin{matrix}3&-2\\5&-5\end{matrix}\right) ನ ವಿಲೋಮ ಮಾತೃಕೆ ಮೂಲಕ ಸಮೀಕರಣವನ್ನು ಎಡಕ್ಕೆ ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\5&-5\end{matrix}\right))\left(\begin{matrix}2\\10\end{matrix}\right)
ಮಾತೃಕೆ ಮತ್ತು ಅದರ ವಿಲೋಮದ ವ್ಯುತ್ಪನ್ನವು ಗುರುತು ಮಾತೃಕೆ ಆಗಿದೆ.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\5&-5\end{matrix}\right))\left(\begin{matrix}2\\10\end{matrix}\right)
ಸಮಾನ ಚಿಹ್ನೆಯ ಎಡ ಬದಿಯಲ್ಲಿ ಮಾತೃಕೆಗಳನ್ನು ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{3\left(-5\right)-\left(-2\times 5\right)}&-\frac{-2}{3\left(-5\right)-\left(-2\times 5\right)}\\-\frac{5}{3\left(-5\right)-\left(-2\times 5\right)}&\frac{3}{3\left(-5\right)-\left(-2\times 5\right)}\end{matrix}\right)\left(\begin{matrix}2\\10\end{matrix}\right)
2\times 2 ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) ಗೆ; ವಿಲೋಮ ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ಆಗಿದೆ, ಆದ್ದರಿಂದ ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಸಮೀಕರಣವನ್ನು ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಗುಣಾಕಾರ ಸಮಸ್ಯೆಯೆಂದು ಮರುಬರೆಯಬಹುದು.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-\frac{2}{5}\\1&-\frac{3}{5}\end{matrix}\right)\left(\begin{matrix}2\\10\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2-\frac{2}{5}\times 10\\2-\frac{3}{5}\times 10\end{matrix}\right)
ಮಾತೃಕೆಗಳನ್ನು ಗುಣಿಸಿ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-4\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
x=-2,y=-4
ಮಾತೃಕೆ ಅಂಶಗಳು x ಮತ್ತು y ಬೇರೆ ಮಾಡಿ.
3x-2y=2,5x-5y=10
ತೆಗೆದುಹಾಕುವಿಕೆ ಮೂಲಕ ಪರಿಹರಿಸಲು, ಚರಾಂಶಗಳಲ್ಲಿನ ಗುಣಾಂಕಗಳು ಎರಡು ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದೇ ಆಗಿರಬೇಕು ಈ ಮೂಲಕ ಇತರೆಯಿಂದ ಒಂದು ಸಮೀಕರಣವನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ ಚರಾಂಶವನ್ನು ರದ್ದುಗೊಳಿಸಲಾಗುತ್ತದೆ.
5\times 3x+5\left(-2\right)y=5\times 2,3\times 5x+3\left(-5\right)y=3\times 10
3x ಮತ್ತು 5x ಸಮವಾಗಿ ಮಾಡಲು, ಮೊದಲ ಸಮೀಕರಣದ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು 5 ಎರಡನೇ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು 3 ರಿಂದ ಗುಣಿಸಿ.
15x-10y=10,15x-15y=30
ಸರಳೀಕೃತಗೊಳಿಸಿ.
15x-15x-10y+15y=10-30
ಸಮ ಚಿಹ್ನೆಯ ಪ್ರತಿ ಬದಿಯಲ್ಲಿ ಪದಗಳಂತಹವುಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ 15x-10y=10 ದಿಂದ 15x-15y=30 ಕಳೆಯಿರಿ.
-10y+15y=10-30
-15x ಗೆ 15x ಸೇರಿಸಿ. ನಿಯಮಗಳು 15x ಮತ್ತು -15x ರದ್ದುಗೊಳಿಸಲಾಗಿದೆ, ಈ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದಾಗ ಏಕೈಕ ಚರಾಂಶದ ಜೊತೆಗೆ ಸಮೀಕರಣವನ್ನು ಉಳಿಸಿದೆ.
5y=10-30
15y ಗೆ -10y ಸೇರಿಸಿ.
5y=-20
-30 ಗೆ 10 ಸೇರಿಸಿ.
y=-4
5 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
5x-5\left(-4\right)=10
5x-5y=10 ನಲ್ಲಿ y ಗಾಗಿ -4 ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ x ಪರಿಹರಿಸಬಹುದು.
5x+20=10
-4 ಅನ್ನು -5 ಬಾರಿ ಗುಣಿಸಿ.
5x=-10
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 20 ಕಳೆಯಿರಿ.
x=-2
5 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=-2,y=-4
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.