ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x, y ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

3x+6y=210,\frac{1}{4}x+\frac{1}{5}y=\sqrt{210}
ಪರ್ಯಾಯವನ್ನು ಬಳಸಿಕೊಂಡು ಸಮೀಕರಣಗಳ ಜೋಡಿಯನ್ನು ಪರಿಹರಿಸಲು, ಮೊದಲು ಚರಾಂಶಗಳ ಒಂದಕ್ಕೆ ಸಮೀಕರಣಗಳ ಒಂದನ್ನು ಪರಿಹರಿಸಿ. ತದನಂತರ ಇತರ ಸಮೀಕರಣದಲ್ಲಿ ಆ ಚರಾಂಶಕ್ಕೆ ಫಲಿತಾಂಶವನ್ನು ಬದಲಿಸಿ.
3x+6y=210
ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದನ್ನು ಆರಿಸಿ ಹಾಗೂ ಸಮ ಚಿಹ್ನೆಯ ಎಡಭಾಗದಲ್ಲಿ x ಪ್ರತ್ಯೇಕಿಸುವ ಮೂಲಕ x ಗಾಗಿ ಅದನ್ನು ಪರಿಹರಿಸಿ.
3x=-6y+210
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 6y ಕಳೆಯಿರಿ.
x=\frac{1}{3}\left(-6y+210\right)
3 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=-2y+70
-6y+210 ಅನ್ನು \frac{1}{3} ಬಾರಿ ಗುಣಿಸಿ.
\frac{1}{4}\left(-2y+70\right)+\frac{1}{5}y=\sqrt{210}
ಇತರ ಸಮೀಕರಣ \frac{1}{4}x+\frac{1}{5}y=\sqrt{210} ನಲ್ಲಿ x ಗಾಗಿ -2y+70 ಬದಲಿಸಿ.
-\frac{1}{2}y+\frac{35}{2}+\frac{1}{5}y=\sqrt{210}
-2y+70 ಅನ್ನು \frac{1}{4} ಬಾರಿ ಗುಣಿಸಿ.
-\frac{3}{10}y+\frac{35}{2}=\sqrt{210}
\frac{y}{5} ಗೆ -\frac{y}{2} ಸೇರಿಸಿ.
-\frac{3}{10}y=\sqrt{210}-\frac{35}{2}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{35}{2} ಕಳೆಯಿರಿ.
y=\frac{175-10\sqrt{210}}{3}
ಭಿನ್ನಾಂಕದ ವ್ಯುತ್ಕ್ರಮದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿದಾಗ ಯಾವುದು ಒಂದೇ ಬರುತ್ತದೆಯೋ, -\frac{3}{10} ದಿಂದ ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=-2\times \frac{175-10\sqrt{210}}{3}+70
x=-2y+70 ನಲ್ಲಿ y ಗಾಗಿ \frac{-10\sqrt{210}+175}{3} ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ x ಪರಿಹರಿಸಬಹುದು.
x=\frac{20\sqrt{210}-350}{3}+70
\frac{-10\sqrt{210}+175}{3} ಅನ್ನು -2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{20\sqrt{210}-140}{3}
\frac{20\sqrt{210}-350}{3} ಗೆ 70 ಸೇರಿಸಿ.
x=\frac{20\sqrt{210}-140}{3},y=\frac{175-10\sqrt{210}}{3}
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
3x+6y=210,\frac{1}{4}x+\frac{1}{5}y=\sqrt{210}
ತೆಗೆದುಹಾಕುವಿಕೆ ಮೂಲಕ ಪರಿಹರಿಸಲು, ಚರಾಂಶಗಳಲ್ಲಿನ ಗುಣಾಂಕಗಳು ಎರಡು ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದೇ ಆಗಿರಬೇಕು ಈ ಮೂಲಕ ಇತರೆಯಿಂದ ಒಂದು ಸಮೀಕರಣವನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ ಚರಾಂಶವನ್ನು ರದ್ದುಗೊಳಿಸಲಾಗುತ್ತದೆ.
\frac{1}{4}\times 3x+\frac{1}{4}\times 6y=\frac{1}{4}\times 210,3\times \frac{1}{4}x+3\times \frac{1}{5}y=3\sqrt{210}
3x ಮತ್ತು \frac{x}{4} ಸಮವಾಗಿ ಮಾಡಲು, ಮೊದಲ ಸಮೀಕರಣದ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು \frac{1}{4} ಎರಡನೇ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು 3 ರಿಂದ ಗುಣಿಸಿ.
\frac{3}{4}x+\frac{3}{2}y=\frac{105}{2},\frac{3}{4}x+\frac{3}{5}y=3\sqrt{210}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
\frac{3}{4}x-\frac{3}{4}x+\frac{3}{2}y-\frac{3}{5}y=\frac{105}{2}-3\sqrt{210}
ಸಮ ಚಿಹ್ನೆಯ ಪ್ರತಿ ಬದಿಯಲ್ಲಿ ಪದಗಳಂತಹವುಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ \frac{3}{4}x+\frac{3}{2}y=\frac{105}{2} ದಿಂದ \frac{3}{4}x+\frac{3}{5}y=3\sqrt{210} ಕಳೆಯಿರಿ.
\frac{3}{2}y-\frac{3}{5}y=\frac{105}{2}-3\sqrt{210}
-\frac{3x}{4} ಗೆ \frac{3x}{4} ಸೇರಿಸಿ. ನಿಯಮಗಳು \frac{3x}{4} ಮತ್ತು -\frac{3x}{4} ರದ್ದುಗೊಳಿಸಲಾಗಿದೆ, ಈ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದಾಗ ಏಕೈಕ ಚರಾಂಶದ ಜೊತೆಗೆ ಸಮೀಕರಣವನ್ನು ಉಳಿಸಿದೆ.
\frac{9}{10}y=\frac{105}{2}-3\sqrt{210}
-\frac{3y}{5} ಗೆ \frac{3y}{2} ಸೇರಿಸಿ.
y=\frac{175-10\sqrt{210}}{3}
ಭಿನ್ನಾಂಕದ ವ್ಯುತ್ಕ್ರಮದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿದಾಗ ಯಾವುದು ಒಂದೇ ಬರುತ್ತದೆಯೋ, \frac{9}{10} ದಿಂದ ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
\frac{1}{4}x+\frac{1}{5}\times \frac{175-10\sqrt{210}}{3}=\sqrt{210}
\frac{1}{4}x+\frac{1}{5}y=\sqrt{210} ನಲ್ಲಿ y ಗಾಗಿ \frac{175-10\sqrt{210}}{3} ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ x ಪರಿಹರಿಸಬಹುದು.
\frac{1}{4}x+\frac{35-2\sqrt{210}}{3}=\sqrt{210}
\frac{175-10\sqrt{210}}{3} ಅನ್ನು \frac{1}{5} ಬಾರಿ ಗುಣಿಸಿ.
\frac{1}{4}x=\frac{5\sqrt{210}-35}{3}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{-2\sqrt{210}+35}{3} ಕಳೆಯಿರಿ.
x=\frac{20\sqrt{210}-140}{3}
4 ಮೂಲಕ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
x=\frac{20\sqrt{210}-140}{3},y=\frac{175-10\sqrt{210}}{3}
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.