ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
u, z ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

3u+z=15,u+2z=10
ಪರ್ಯಾಯವನ್ನು ಬಳಸಿಕೊಂಡು ಸಮೀಕರಣಗಳ ಜೋಡಿಯನ್ನು ಪರಿಹರಿಸಲು, ಮೊದಲು ಚರಾಂಶಗಳ ಒಂದಕ್ಕೆ ಸಮೀಕರಣಗಳ ಒಂದನ್ನು ಪರಿಹರಿಸಿ. ತದನಂತರ ಇತರ ಸಮೀಕರಣದಲ್ಲಿ ಆ ಚರಾಂಶಕ್ಕೆ ಫಲಿತಾಂಶವನ್ನು ಬದಲಿಸಿ.
3u+z=15
ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದನ್ನು ಆರಿಸಿ ಹಾಗೂ ಸಮ ಚಿಹ್ನೆಯ ಎಡಭಾಗದಲ್ಲಿ u ಪ್ರತ್ಯೇಕಿಸುವ ಮೂಲಕ u ಗಾಗಿ ಅದನ್ನು ಪರಿಹರಿಸಿ.
3u=-z+15
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ z ಕಳೆಯಿರಿ.
u=\frac{1}{3}\left(-z+15\right)
3 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
u=-\frac{1}{3}z+5
-z+15 ಅನ್ನು \frac{1}{3} ಬಾರಿ ಗುಣಿಸಿ.
-\frac{1}{3}z+5+2z=10
ಇತರ ಸಮೀಕರಣ u+2z=10 ನಲ್ಲಿ u ಗಾಗಿ -\frac{z}{3}+5 ಬದಲಿಸಿ.
\frac{5}{3}z+5=10
2z ಗೆ -\frac{z}{3} ಸೇರಿಸಿ.
\frac{5}{3}z=5
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 5 ಕಳೆಯಿರಿ.
z=3
ಭಿನ್ನಾಂಕದ ವ್ಯುತ್ಕ್ರಮದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿದಾಗ ಯಾವುದು ಒಂದೇ ಬರುತ್ತದೆಯೋ, \frac{5}{3} ದಿಂದ ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
u=-\frac{1}{3}\times 3+5
u=-\frac{1}{3}z+5 ನಲ್ಲಿ z ಗಾಗಿ 3 ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ u ಪರಿಹರಿಸಬಹುದು.
u=-1+5
3 ಅನ್ನು -\frac{1}{3} ಬಾರಿ ಗುಣಿಸಿ.
u=4
-1 ಗೆ 5 ಸೇರಿಸಿ.
u=4,z=3
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
3u+z=15,u+2z=10
ಸಮೀಕರಣಗಳನ್ನು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಿಸಿ ತದನಂತರ ಸಮೀಕರಣಗಳ ವ್ಯವಸ್ಥೆಯನ್ನು ಪರಿಹರಿಸಲು ಮ್ಯಾಟ್ರಿಸೈಸ್ ಬಳಸಿ.
\left(\begin{matrix}3&1\\1&2\end{matrix}\right)\left(\begin{matrix}u\\z\end{matrix}\right)=\left(\begin{matrix}15\\10\end{matrix}\right)
ಸಮೀಕರಣಗಳನ್ನು ಮಾತೃಕೆ ರೂಪದಲ್ಲಿ ಬರೆಯಿರಿ.
inverse(\left(\begin{matrix}3&1\\1&2\end{matrix}\right))\left(\begin{matrix}3&1\\1&2\end{matrix}\right)\left(\begin{matrix}u\\z\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&2\end{matrix}\right))\left(\begin{matrix}15\\10\end{matrix}\right)
\left(\begin{matrix}3&1\\1&2\end{matrix}\right) ನ ವಿಲೋಮ ಮಾತೃಕೆ ಮೂಲಕ ಸಮೀಕರಣವನ್ನು ಎಡಕ್ಕೆ ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}u\\z\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&2\end{matrix}\right))\left(\begin{matrix}15\\10\end{matrix}\right)
ಮಾತೃಕೆ ಮತ್ತು ಅದರ ವಿಲೋಮದ ವ್ಯುತ್ಪನ್ನವು ಗುರುತು ಮಾತೃಕೆ ಆಗಿದೆ.
\left(\begin{matrix}u\\z\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&2\end{matrix}\right))\left(\begin{matrix}15\\10\end{matrix}\right)
ಸಮಾನ ಚಿಹ್ನೆಯ ಎಡ ಬದಿಯಲ್ಲಿ ಮಾತೃಕೆಗಳನ್ನು ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}u\\z\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-1}&-\frac{1}{3\times 2-1}\\-\frac{1}{3\times 2-1}&\frac{3}{3\times 2-1}\end{matrix}\right)\left(\begin{matrix}15\\10\end{matrix}\right)
2\times 2 ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) ಗೆ; ವಿಲೋಮ ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ಆಗಿದೆ, ಆದ್ದರಿಂದ ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಸಮೀಕರಣವನ್ನು ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಗುಣಾಕಾರ ಸಮಸ್ಯೆಯೆಂದು ಮರುಬರೆಯಬಹುದು.
\left(\begin{matrix}u\\z\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&-\frac{1}{5}\\-\frac{1}{5}&\frac{3}{5}\end{matrix}\right)\left(\begin{matrix}15\\10\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
\left(\begin{matrix}u\\z\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\times 15-\frac{1}{5}\times 10\\-\frac{1}{5}\times 15+\frac{3}{5}\times 10\end{matrix}\right)
ಮಾತೃಕೆಗಳನ್ನು ಗುಣಿಸಿ.
\left(\begin{matrix}u\\z\end{matrix}\right)=\left(\begin{matrix}4\\3\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
u=4,z=3
ಮಾತೃಕೆ ಅಂಶಗಳು u ಮತ್ತು z ಬೇರೆ ಮಾಡಿ.
3u+z=15,u+2z=10
ತೆಗೆದುಹಾಕುವಿಕೆ ಮೂಲಕ ಪರಿಹರಿಸಲು, ಚರಾಂಶಗಳಲ್ಲಿನ ಗುಣಾಂಕಗಳು ಎರಡು ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದೇ ಆಗಿರಬೇಕು ಈ ಮೂಲಕ ಇತರೆಯಿಂದ ಒಂದು ಸಮೀಕರಣವನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ ಚರಾಂಶವನ್ನು ರದ್ದುಗೊಳಿಸಲಾಗುತ್ತದೆ.
3u+z=15,3u+3\times 2z=3\times 10
3u ಮತ್ತು u ಸಮವಾಗಿ ಮಾಡಲು, ಮೊದಲ ಸಮೀಕರಣದ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು 1 ಎರಡನೇ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು 3 ರಿಂದ ಗುಣಿಸಿ.
3u+z=15,3u+6z=30
ಸರಳೀಕೃತಗೊಳಿಸಿ.
3u-3u+z-6z=15-30
ಸಮ ಚಿಹ್ನೆಯ ಪ್ರತಿ ಬದಿಯಲ್ಲಿ ಪದಗಳಂತಹವುಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ 3u+z=15 ದಿಂದ 3u+6z=30 ಕಳೆಯಿರಿ.
z-6z=15-30
-3u ಗೆ 3u ಸೇರಿಸಿ. ನಿಯಮಗಳು 3u ಮತ್ತು -3u ರದ್ದುಗೊಳಿಸಲಾಗಿದೆ, ಈ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದಾಗ ಏಕೈಕ ಚರಾಂಶದ ಜೊತೆಗೆ ಸಮೀಕರಣವನ್ನು ಉಳಿಸಿದೆ.
-5z=15-30
-6z ಗೆ z ಸೇರಿಸಿ.
-5z=-15
-30 ಗೆ 15 ಸೇರಿಸಿ.
z=3
-5 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
u+2\times 3=10
u+2z=10 ನಲ್ಲಿ z ಗಾಗಿ 3 ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ u ಪರಿಹರಿಸಬಹುದು.
u+6=10
3 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
u=4
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 6 ಕಳೆಯಿರಿ.
u=4,z=3
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.