ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image
ಅಪವರ್ತನ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

2x^{2}-10x+5+x^{2}+1
-10x ಪಡೆದುಕೊಳ್ಳಲು -3x ಮತ್ತು -7x ಕೂಡಿಸಿ.
3x^{2}-10x+5+1
3x^{2} ಪಡೆದುಕೊಳ್ಳಲು 2x^{2} ಮತ್ತು x^{2} ಕೂಡಿಸಿ.
3x^{2}-10x+6
6 ಪಡೆದುಕೊಳ್ಳಲು 5 ಮತ್ತು 1 ಸೇರಿಸಿ.
factor(2x^{2}-10x+5+x^{2}+1)
-10x ಪಡೆದುಕೊಳ್ಳಲು -3x ಮತ್ತು -7x ಕೂಡಿಸಿ.
factor(3x^{2}-10x+5+1)
3x^{2} ಪಡೆದುಕೊಳ್ಳಲು 2x^{2} ಮತ್ತು x^{2} ಕೂಡಿಸಿ.
factor(3x^{2}-10x+6)
6 ಪಡೆದುಕೊಳ್ಳಲು 5 ಮತ್ತು 1 ಸೇರಿಸಿ.
3x^{2}-10x+6=0
ವರ್ಗೀಯ ಬಹುಪದೋಕ್ತಿಯನ್ನು ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ಪರಿವರ್ತನೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಬಹುದು, ಇಲ್ಲಿ x_{1} ಮತ್ತು x_{2} ಇವುಗಳು ವರ್ಗೀಯ ಸಮೀಕರಣ ax^{2}+bx+c=0 ದ ಪರಿಹಾರಗಳಾಗಿವೆ.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 3\times 6}}{2\times 3}
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 3\times 6}}{2\times 3}
ವರ್ಗ -10.
x=\frac{-\left(-10\right)±\sqrt{100-12\times 6}}{2\times 3}
3 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-10\right)±\sqrt{100-72}}{2\times 3}
6 ಅನ್ನು -12 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-10\right)±\sqrt{28}}{2\times 3}
-72 ಗೆ 100 ಸೇರಿಸಿ.
x=\frac{-\left(-10\right)±2\sqrt{7}}{2\times 3}
28 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{10±2\sqrt{7}}{2\times 3}
-10 ನ ವಿಲೋಮವು 10 ಆಗಿದೆ.
x=\frac{10±2\sqrt{7}}{6}
3 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{2\sqrt{7}+10}{6}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{10±2\sqrt{7}}{6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2\sqrt{7} ಗೆ 10 ಸೇರಿಸಿ.
x=\frac{\sqrt{7}+5}{3}
6 ದಿಂದ 10+2\sqrt{7} ಭಾಗಿಸಿ.
x=\frac{10-2\sqrt{7}}{6}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{10±2\sqrt{7}}{6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 10 ದಿಂದ 2\sqrt{7} ಕಳೆಯಿರಿ.
x=\frac{5-\sqrt{7}}{3}
6 ದಿಂದ 10-2\sqrt{7} ಭಾಗಿಸಿ.
3x^{2}-10x+6=3\left(x-\frac{\sqrt{7}+5}{3}\right)\left(x-\frac{5-\sqrt{7}}{3}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ನ್ನು ಬಳಸಿಕೊಂಡು ಮೂಲ ಉಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. x_{1} ಗೆ ಬದಲಾಗಿ \frac{5+\sqrt{7}}{3} ನ್ನು ಮತ್ತು x_{2} ಗೆ ಬದಲಾಗಿ \frac{5-\sqrt{7}}{3} ನ್ನು ಬಳಸಿ.