ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x, y ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

-5x+5y+3y=2x
ಮೊದಲನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. x-y ದಿಂದ -5 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
-5x+8y=2x
8y ಪಡೆದುಕೊಳ್ಳಲು 5y ಮತ್ತು 3y ಕೂಡಿಸಿ.
-5x+8y-2x=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 2x ಕಳೆಯಿರಿ.
-7x+8y=0
-7x ಪಡೆದುಕೊಳ್ಳಲು -5x ಮತ್ತು -2x ಕೂಡಿಸಿ.
2y-6x-7=-2
ಎರಡನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. 6x+7 ವಿರುದ್ಧವನ್ನು ಹುಡುಕಲು, ಪ್ರತಿ ಪದದ ವಿರುದ್ಧ ಪದವನ್ನು ಹುಡುಕಿ.
2y-6x=-2+7
ಎರಡೂ ಬದಿಗಳಿಗೆ 7 ಸೇರಿಸಿ.
2y-6x=5
5 ಪಡೆದುಕೊಳ್ಳಲು -2 ಮತ್ತು 7 ಸೇರಿಸಿ.
-7x+8y=0,-6x+2y=5
ಪರ್ಯಾಯವನ್ನು ಬಳಸಿಕೊಂಡು ಸಮೀಕರಣಗಳ ಜೋಡಿಯನ್ನು ಪರಿಹರಿಸಲು, ಮೊದಲು ಚರಾಂಶಗಳ ಒಂದಕ್ಕೆ ಸಮೀಕರಣಗಳ ಒಂದನ್ನು ಪರಿಹರಿಸಿ. ತದನಂತರ ಇತರ ಸಮೀಕರಣದಲ್ಲಿ ಆ ಚರಾಂಶಕ್ಕೆ ಫಲಿತಾಂಶವನ್ನು ಬದಲಿಸಿ.
-7x+8y=0
ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದನ್ನು ಆರಿಸಿ ಹಾಗೂ ಸಮ ಚಿಹ್ನೆಯ ಎಡಭಾಗದಲ್ಲಿ x ಪ್ರತ್ಯೇಕಿಸುವ ಮೂಲಕ x ಗಾಗಿ ಅದನ್ನು ಪರಿಹರಿಸಿ.
-7x=-8y
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 8y ಕಳೆಯಿರಿ.
x=-\frac{1}{7}\left(-8\right)y
-7 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=\frac{8}{7}y
-8y ಅನ್ನು -\frac{1}{7} ಬಾರಿ ಗುಣಿಸಿ.
-6\times \frac{8}{7}y+2y=5
ಇತರ ಸಮೀಕರಣ -6x+2y=5 ನಲ್ಲಿ x ಗಾಗಿ \frac{8y}{7} ಬದಲಿಸಿ.
-\frac{48}{7}y+2y=5
\frac{8y}{7} ಅನ್ನು -6 ಬಾರಿ ಗುಣಿಸಿ.
-\frac{34}{7}y=5
2y ಗೆ -\frac{48y}{7} ಸೇರಿಸಿ.
y=-\frac{35}{34}
ಭಿನ್ನಾಂಕದ ವ್ಯುತ್ಕ್ರಮದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿದಾಗ ಯಾವುದು ಒಂದೇ ಬರುತ್ತದೆಯೋ, -\frac{34}{7} ದಿಂದ ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=\frac{8}{7}\left(-\frac{35}{34}\right)
x=\frac{8}{7}y ನಲ್ಲಿ y ಗಾಗಿ -\frac{35}{34} ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ x ಪರಿಹರಿಸಬಹುದು.
x=-\frac{20}{17}
ಸಂಖ್ಯಾಕಾರ ಸಮಯ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದ ಸಮಯ ಛೇದವನ್ನು ಗುಣಿಸುವ ಮೂಲಕ -\frac{35}{34} ಅನ್ನು \frac{8}{7} ಬಾರಿ ಗುಣಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
x=-\frac{20}{17},y=-\frac{35}{34}
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
-5x+5y+3y=2x
ಮೊದಲನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. x-y ದಿಂದ -5 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
-5x+8y=2x
8y ಪಡೆದುಕೊಳ್ಳಲು 5y ಮತ್ತು 3y ಕೂಡಿಸಿ.
-5x+8y-2x=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 2x ಕಳೆಯಿರಿ.
-7x+8y=0
-7x ಪಡೆದುಕೊಳ್ಳಲು -5x ಮತ್ತು -2x ಕೂಡಿಸಿ.
2y-6x-7=-2
ಎರಡನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. 6x+7 ವಿರುದ್ಧವನ್ನು ಹುಡುಕಲು, ಪ್ರತಿ ಪದದ ವಿರುದ್ಧ ಪದವನ್ನು ಹುಡುಕಿ.
2y-6x=-2+7
ಎರಡೂ ಬದಿಗಳಿಗೆ 7 ಸೇರಿಸಿ.
2y-6x=5
5 ಪಡೆದುಕೊಳ್ಳಲು -2 ಮತ್ತು 7 ಸೇರಿಸಿ.
-7x+8y=0,-6x+2y=5
ಸಮೀಕರಣಗಳನ್ನು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಿಸಿ ತದನಂತರ ಸಮೀಕರಣಗಳ ವ್ಯವಸ್ಥೆಯನ್ನು ಪರಿಹರಿಸಲು ಮ್ಯಾಟ್ರಿಸೈಸ್ ಬಳಸಿ.
\left(\begin{matrix}-7&8\\-6&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\5\end{matrix}\right)
ಸಮೀಕರಣಗಳನ್ನು ಮಾತೃಕೆ ರೂಪದಲ್ಲಿ ಬರೆಯಿರಿ.
inverse(\left(\begin{matrix}-7&8\\-6&2\end{matrix}\right))\left(\begin{matrix}-7&8\\-6&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7&8\\-6&2\end{matrix}\right))\left(\begin{matrix}0\\5\end{matrix}\right)
\left(\begin{matrix}-7&8\\-6&2\end{matrix}\right) ನ ವಿಲೋಮ ಮಾತೃಕೆ ಮೂಲಕ ಸಮೀಕರಣವನ್ನು ಎಡಕ್ಕೆ ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7&8\\-6&2\end{matrix}\right))\left(\begin{matrix}0\\5\end{matrix}\right)
ಮಾತೃಕೆ ಮತ್ತು ಅದರ ವಿಲೋಮದ ವ್ಯುತ್ಪನ್ನವು ಗುರುತು ಮಾತೃಕೆ ಆಗಿದೆ.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7&8\\-6&2\end{matrix}\right))\left(\begin{matrix}0\\5\end{matrix}\right)
ಸಮಾನ ಚಿಹ್ನೆಯ ಎಡ ಬದಿಯಲ್ಲಿ ಮಾತೃಕೆಗಳನ್ನು ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-7\times 2-8\left(-6\right)}&-\frac{8}{-7\times 2-8\left(-6\right)}\\-\frac{-6}{-7\times 2-8\left(-6\right)}&-\frac{7}{-7\times 2-8\left(-6\right)}\end{matrix}\right)\left(\begin{matrix}0\\5\end{matrix}\right)
2\times 2 ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) ಗೆ; ವಿಲೋಮ ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ಆಗಿದೆ, ಆದ್ದರಿಂದ ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಸಮೀಕರಣವನ್ನು ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಗುಣಾಕಾರ ಸಮಸ್ಯೆಯೆಂದು ಮರುಬರೆಯಬಹುದು.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{17}&-\frac{4}{17}\\\frac{3}{17}&-\frac{7}{34}\end{matrix}\right)\left(\begin{matrix}0\\5\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{17}\times 5\\-\frac{7}{34}\times 5\end{matrix}\right)
ಮಾತೃಕೆಗಳನ್ನು ಗುಣಿಸಿ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{20}{17}\\-\frac{35}{34}\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
x=-\frac{20}{17},y=-\frac{35}{34}
ಮಾತೃಕೆ ಅಂಶಗಳು x ಮತ್ತು y ಬೇರೆ ಮಾಡಿ.
-5x+5y+3y=2x
ಮೊದಲನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. x-y ದಿಂದ -5 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
-5x+8y=2x
8y ಪಡೆದುಕೊಳ್ಳಲು 5y ಮತ್ತು 3y ಕೂಡಿಸಿ.
-5x+8y-2x=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 2x ಕಳೆಯಿರಿ.
-7x+8y=0
-7x ಪಡೆದುಕೊಳ್ಳಲು -5x ಮತ್ತು -2x ಕೂಡಿಸಿ.
2y-6x-7=-2
ಎರಡನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. 6x+7 ವಿರುದ್ಧವನ್ನು ಹುಡುಕಲು, ಪ್ರತಿ ಪದದ ವಿರುದ್ಧ ಪದವನ್ನು ಹುಡುಕಿ.
2y-6x=-2+7
ಎರಡೂ ಬದಿಗಳಿಗೆ 7 ಸೇರಿಸಿ.
2y-6x=5
5 ಪಡೆದುಕೊಳ್ಳಲು -2 ಮತ್ತು 7 ಸೇರಿಸಿ.
-7x+8y=0,-6x+2y=5
ತೆಗೆದುಹಾಕುವಿಕೆ ಮೂಲಕ ಪರಿಹರಿಸಲು, ಚರಾಂಶಗಳಲ್ಲಿನ ಗುಣಾಂಕಗಳು ಎರಡು ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದೇ ಆಗಿರಬೇಕು ಈ ಮೂಲಕ ಇತರೆಯಿಂದ ಒಂದು ಸಮೀಕರಣವನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ ಚರಾಂಶವನ್ನು ರದ್ದುಗೊಳಿಸಲಾಗುತ್ತದೆ.
-6\left(-7\right)x-6\times 8y=0,-7\left(-6\right)x-7\times 2y=-7\times 5
-7x ಮತ್ತು -6x ಸಮವಾಗಿ ಮಾಡಲು, ಮೊದಲ ಸಮೀಕರಣದ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು -6 ಎರಡನೇ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು -7 ರಿಂದ ಗುಣಿಸಿ.
42x-48y=0,42x-14y=-35
ಸರಳೀಕೃತಗೊಳಿಸಿ.
42x-42x-48y+14y=35
ಸಮ ಚಿಹ್ನೆಯ ಪ್ರತಿ ಬದಿಯಲ್ಲಿ ಪದಗಳಂತಹವುಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ 42x-48y=0 ದಿಂದ 42x-14y=-35 ಕಳೆಯಿರಿ.
-48y+14y=35
-42x ಗೆ 42x ಸೇರಿಸಿ. ನಿಯಮಗಳು 42x ಮತ್ತು -42x ರದ್ದುಗೊಳಿಸಲಾಗಿದೆ, ಈ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದಾಗ ಏಕೈಕ ಚರಾಂಶದ ಜೊತೆಗೆ ಸಮೀಕರಣವನ್ನು ಉಳಿಸಿದೆ.
-34y=35
14y ಗೆ -48y ಸೇರಿಸಿ.
y=-\frac{35}{34}
-34 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
-6x+2\left(-\frac{35}{34}\right)=5
-6x+2y=5 ನಲ್ಲಿ y ಗಾಗಿ -\frac{35}{34} ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ x ಪರಿಹರಿಸಬಹುದು.
-6x-\frac{35}{17}=5
-\frac{35}{34} ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
-6x=\frac{120}{17}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{35}{17} ಸೇರಿಸಿ.
x=-\frac{20}{17}
-6 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=-\frac{20}{17},y=-\frac{35}{34}
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.