ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x, y ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

-3x+9y=27,-5x-8y=-1
ಪರ್ಯಾಯವನ್ನು ಬಳಸಿಕೊಂಡು ಸಮೀಕರಣಗಳ ಜೋಡಿಯನ್ನು ಪರಿಹರಿಸಲು, ಮೊದಲು ಚರಾಂಶಗಳ ಒಂದಕ್ಕೆ ಸಮೀಕರಣಗಳ ಒಂದನ್ನು ಪರಿಹರಿಸಿ. ತದನಂತರ ಇತರ ಸಮೀಕರಣದಲ್ಲಿ ಆ ಚರಾಂಶಕ್ಕೆ ಫಲಿತಾಂಶವನ್ನು ಬದಲಿಸಿ.
-3x+9y=27
ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದನ್ನು ಆರಿಸಿ ಹಾಗೂ ಸಮ ಚಿಹ್ನೆಯ ಎಡಭಾಗದಲ್ಲಿ x ಪ್ರತ್ಯೇಕಿಸುವ ಮೂಲಕ x ಗಾಗಿ ಅದನ್ನು ಪರಿಹರಿಸಿ.
-3x=-9y+27
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 9y ಕಳೆಯಿರಿ.
x=-\frac{1}{3}\left(-9y+27\right)
-3 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=3y-9
-9y+27 ಅನ್ನು -\frac{1}{3} ಬಾರಿ ಗುಣಿಸಿ.
-5\left(3y-9\right)-8y=-1
ಇತರ ಸಮೀಕರಣ -5x-8y=-1 ನಲ್ಲಿ x ಗಾಗಿ -9+3y ಬದಲಿಸಿ.
-15y+45-8y=-1
-9+3y ಅನ್ನು -5 ಬಾರಿ ಗುಣಿಸಿ.
-23y+45=-1
-8y ಗೆ -15y ಸೇರಿಸಿ.
-23y=-46
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 45 ಕಳೆಯಿರಿ.
y=2
-23 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=3\times 2-9
x=3y-9 ನಲ್ಲಿ y ಗಾಗಿ 2 ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ x ಪರಿಹರಿಸಬಹುದು.
x=6-9
2 ಅನ್ನು 3 ಬಾರಿ ಗುಣಿಸಿ.
x=-3
6 ಗೆ -9 ಸೇರಿಸಿ.
x=-3,y=2
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
-3x+9y=27,-5x-8y=-1
ಸಮೀಕರಣಗಳನ್ನು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಿಸಿ ತದನಂತರ ಸಮೀಕರಣಗಳ ವ್ಯವಸ್ಥೆಯನ್ನು ಪರಿಹರಿಸಲು ಮ್ಯಾಟ್ರಿಸೈಸ್ ಬಳಸಿ.
\left(\begin{matrix}-3&9\\-5&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}27\\-1\end{matrix}\right)
ಸಮೀಕರಣಗಳನ್ನು ಮಾತೃಕೆ ರೂಪದಲ್ಲಿ ಬರೆಯಿರಿ.
inverse(\left(\begin{matrix}-3&9\\-5&-8\end{matrix}\right))\left(\begin{matrix}-3&9\\-5&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&9\\-5&-8\end{matrix}\right))\left(\begin{matrix}27\\-1\end{matrix}\right)
\left(\begin{matrix}-3&9\\-5&-8\end{matrix}\right) ನ ವಿಲೋಮ ಮಾತೃಕೆ ಮೂಲಕ ಸಮೀಕರಣವನ್ನು ಎಡಕ್ಕೆ ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&9\\-5&-8\end{matrix}\right))\left(\begin{matrix}27\\-1\end{matrix}\right)
ಮಾತೃಕೆ ಮತ್ತು ಅದರ ವಿಲೋಮದ ವ್ಯುತ್ಪನ್ನವು ಗುರುತು ಮಾತೃಕೆ ಆಗಿದೆ.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&9\\-5&-8\end{matrix}\right))\left(\begin{matrix}27\\-1\end{matrix}\right)
ಸಮಾನ ಚಿಹ್ನೆಯ ಎಡ ಬದಿಯಲ್ಲಿ ಮಾತೃಕೆಗಳನ್ನು ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{-3\left(-8\right)-9\left(-5\right)}&-\frac{9}{-3\left(-8\right)-9\left(-5\right)}\\-\frac{-5}{-3\left(-8\right)-9\left(-5\right)}&-\frac{3}{-3\left(-8\right)-9\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}27\\-1\end{matrix}\right)
2\times 2 ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) ಗೆ; ವಿಲೋಮ ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ಆಗಿದೆ, ಆದ್ದರಿಂದ ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಸಮೀಕರಣವನ್ನು ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಗುಣಾಕಾರ ಸಮಸ್ಯೆಯೆಂದು ಮರುಬರೆಯಬಹುದು.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{69}&-\frac{3}{23}\\\frac{5}{69}&-\frac{1}{23}\end{matrix}\right)\left(\begin{matrix}27\\-1\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{69}\times 27-\frac{3}{23}\left(-1\right)\\\frac{5}{69}\times 27-\frac{1}{23}\left(-1\right)\end{matrix}\right)
ಮಾತೃಕೆಗಳನ್ನು ಗುಣಿಸಿ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\2\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
x=-3,y=2
ಮಾತೃಕೆ ಅಂಶಗಳು x ಮತ್ತು y ಬೇರೆ ಮಾಡಿ.
-3x+9y=27,-5x-8y=-1
ತೆಗೆದುಹಾಕುವಿಕೆ ಮೂಲಕ ಪರಿಹರಿಸಲು, ಚರಾಂಶಗಳಲ್ಲಿನ ಗುಣಾಂಕಗಳು ಎರಡು ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದೇ ಆಗಿರಬೇಕು ಈ ಮೂಲಕ ಇತರೆಯಿಂದ ಒಂದು ಸಮೀಕರಣವನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ ಚರಾಂಶವನ್ನು ರದ್ದುಗೊಳಿಸಲಾಗುತ್ತದೆ.
-5\left(-3\right)x-5\times 9y=-5\times 27,-3\left(-5\right)x-3\left(-8\right)y=-3\left(-1\right)
-3x ಮತ್ತು -5x ಸಮವಾಗಿ ಮಾಡಲು, ಮೊದಲ ಸಮೀಕರಣದ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು -5 ಎರಡನೇ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು -3 ರಿಂದ ಗುಣಿಸಿ.
15x-45y=-135,15x+24y=3
ಸರಳೀಕೃತಗೊಳಿಸಿ.
15x-15x-45y-24y=-135-3
ಸಮ ಚಿಹ್ನೆಯ ಪ್ರತಿ ಬದಿಯಲ್ಲಿ ಪದಗಳಂತಹವುಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ 15x-45y=-135 ದಿಂದ 15x+24y=3 ಕಳೆಯಿರಿ.
-45y-24y=-135-3
-15x ಗೆ 15x ಸೇರಿಸಿ. ನಿಯಮಗಳು 15x ಮತ್ತು -15x ರದ್ದುಗೊಳಿಸಲಾಗಿದೆ, ಈ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದಾಗ ಏಕೈಕ ಚರಾಂಶದ ಜೊತೆಗೆ ಸಮೀಕರಣವನ್ನು ಉಳಿಸಿದೆ.
-69y=-135-3
-24y ಗೆ -45y ಸೇರಿಸಿ.
-69y=-138
-3 ಗೆ -135 ಸೇರಿಸಿ.
y=2
-69 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
-5x-8\times 2=-1
-5x-8y=-1 ನಲ್ಲಿ y ಗಾಗಿ 2 ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ x ಪರಿಹರಿಸಬಹುದು.
-5x-16=-1
2 ಅನ್ನು -8 ಬಾರಿ ಗುಣಿಸಿ.
-5x=15
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 16 ಸೇರಿಸಿ.
x=-3
-5 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=-3,y=2
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.