A, B ಪರಿಹರಿಸಿ
A=3
B = -\frac{3}{2} = -1\frac{1}{2} = -1.5
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
3A+3B-B=6
ಮೊದಲನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. 3 ದಿಂದ A+B ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
3A+2B=6
2B ಪಡೆದುಕೊಳ್ಳಲು 3B ಮತ್ತು -B ಕೂಡಿಸಿ.
\left(2A+B\right)\times 9-B=42
ಎರಡನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. 2 ನ ಘಾತಕ್ಕೆ 3 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 9 ಪಡೆಯಿರಿ.
18A+9B-B=42
9 ದಿಂದ 2A+B ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
18A+8B=42
8B ಪಡೆದುಕೊಳ್ಳಲು 9B ಮತ್ತು -B ಕೂಡಿಸಿ.
3A+2B=6,18A+8B=42
ಪರ್ಯಾಯವನ್ನು ಬಳಸಿಕೊಂಡು ಸಮೀಕರಣಗಳ ಜೋಡಿಯನ್ನು ಪರಿಹರಿಸಲು, ಮೊದಲು ಚರಾಂಶಗಳ ಒಂದಕ್ಕೆ ಸಮೀಕರಣಗಳ ಒಂದನ್ನು ಪರಿಹರಿಸಿ. ತದನಂತರ ಇತರ ಸಮೀಕರಣದಲ್ಲಿ ಆ ಚರಾಂಶಕ್ಕೆ ಫಲಿತಾಂಶವನ್ನು ಬದಲಿಸಿ.
3A+2B=6
ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದನ್ನು ಆರಿಸಿ ಹಾಗೂ ಸಮ ಚಿಹ್ನೆಯ ಎಡಭಾಗದಲ್ಲಿ A ಪ್ರತ್ಯೇಕಿಸುವ ಮೂಲಕ A ಗಾಗಿ ಅದನ್ನು ಪರಿಹರಿಸಿ.
3A=-2B+6
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 2B ಕಳೆಯಿರಿ.
A=\frac{1}{3}\left(-2B+6\right)
3 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
A=-\frac{2}{3}B+2
-2B+6 ಅನ್ನು \frac{1}{3} ಬಾರಿ ಗುಣಿಸಿ.
18\left(-\frac{2}{3}B+2\right)+8B=42
ಇತರ ಸಮೀಕರಣ 18A+8B=42 ನಲ್ಲಿ A ಗಾಗಿ -\frac{2B}{3}+2 ಬದಲಿಸಿ.
-12B+36+8B=42
-\frac{2B}{3}+2 ಅನ್ನು 18 ಬಾರಿ ಗುಣಿಸಿ.
-4B+36=42
8B ಗೆ -12B ಸೇರಿಸಿ.
-4B=6
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 36 ಕಳೆಯಿರಿ.
B=-\frac{3}{2}
-4 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
A=-\frac{2}{3}\left(-\frac{3}{2}\right)+2
A=-\frac{2}{3}B+2 ನಲ್ಲಿ B ಗಾಗಿ -\frac{3}{2} ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ A ಪರಿಹರಿಸಬಹುದು.
A=1+2
ಸಂಖ್ಯಾಕಾರ ಸಮಯ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದ ಸಮಯ ಛೇದವನ್ನು ಗುಣಿಸುವ ಮೂಲಕ -\frac{3}{2} ಅನ್ನು -\frac{2}{3} ಬಾರಿ ಗುಣಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
A=3
1 ಗೆ 2 ಸೇರಿಸಿ.
A=3,B=-\frac{3}{2}
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
3A+3B-B=6
ಮೊದಲನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. 3 ದಿಂದ A+B ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
3A+2B=6
2B ಪಡೆದುಕೊಳ್ಳಲು 3B ಮತ್ತು -B ಕೂಡಿಸಿ.
\left(2A+B\right)\times 9-B=42
ಎರಡನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. 2 ನ ಘಾತಕ್ಕೆ 3 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 9 ಪಡೆಯಿರಿ.
18A+9B-B=42
9 ದಿಂದ 2A+B ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
18A+8B=42
8B ಪಡೆದುಕೊಳ್ಳಲು 9B ಮತ್ತು -B ಕೂಡಿಸಿ.
3A+2B=6,18A+8B=42
ಸಮೀಕರಣಗಳನ್ನು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಿಸಿ ತದನಂತರ ಸಮೀಕರಣಗಳ ವ್ಯವಸ್ಥೆಯನ್ನು ಪರಿಹರಿಸಲು ಮ್ಯಾಟ್ರಿಸೈಸ್ ಬಳಸಿ.
\left(\begin{matrix}3&2\\18&8\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}6\\42\end{matrix}\right)
ಸಮೀಕರಣಗಳನ್ನು ಮಾತೃಕೆ ರೂಪದಲ್ಲಿ ಬರೆಯಿರಿ.
inverse(\left(\begin{matrix}3&2\\18&8\end{matrix}\right))\left(\begin{matrix}3&2\\18&8\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\18&8\end{matrix}\right))\left(\begin{matrix}6\\42\end{matrix}\right)
\left(\begin{matrix}3&2\\18&8\end{matrix}\right) ನ ವಿಲೋಮ ಮಾತೃಕೆ ಮೂಲಕ ಸಮೀಕರಣವನ್ನು ಎಡಕ್ಕೆ ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\18&8\end{matrix}\right))\left(\begin{matrix}6\\42\end{matrix}\right)
ಮಾತೃಕೆ ಮತ್ತು ಅದರ ವಿಲೋಮದ ವ್ಯುತ್ಪನ್ನವು ಗುರುತು ಮಾತೃಕೆ ಆಗಿದೆ.
\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\18&8\end{matrix}\right))\left(\begin{matrix}6\\42\end{matrix}\right)
ಸಮಾನ ಚಿಹ್ನೆಯ ಎಡ ಬದಿಯಲ್ಲಿ ಮಾತೃಕೆಗಳನ್ನು ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}\frac{8}{3\times 8-2\times 18}&-\frac{2}{3\times 8-2\times 18}\\-\frac{18}{3\times 8-2\times 18}&\frac{3}{3\times 8-2\times 18}\end{matrix}\right)\left(\begin{matrix}6\\42\end{matrix}\right)
2\times 2 ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) ಗೆ; ವಿಲೋಮ ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ಆಗಿದೆ, ಆದ್ದರಿಂದ ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಸಮೀಕರಣವನ್ನು ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಗುಣಾಕಾರ ಸಮಸ್ಯೆಯೆಂದು ಮರುಬರೆಯಬಹುದು.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}&\frac{1}{6}\\\frac{3}{2}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}6\\42\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}\times 6+\frac{1}{6}\times 42\\\frac{3}{2}\times 6-\frac{1}{4}\times 42\end{matrix}\right)
ಮಾತೃಕೆಗಳನ್ನು ಗುಣಿಸಿ.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}3\\-\frac{3}{2}\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
A=3,B=-\frac{3}{2}
ಮಾತೃಕೆ ಅಂಶಗಳು A ಮತ್ತು B ಬೇರೆ ಮಾಡಿ.
3A+3B-B=6
ಮೊದಲನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. 3 ದಿಂದ A+B ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
3A+2B=6
2B ಪಡೆದುಕೊಳ್ಳಲು 3B ಮತ್ತು -B ಕೂಡಿಸಿ.
\left(2A+B\right)\times 9-B=42
ಎರಡನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. 2 ನ ಘಾತಕ್ಕೆ 3 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 9 ಪಡೆಯಿರಿ.
18A+9B-B=42
9 ದಿಂದ 2A+B ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
18A+8B=42
8B ಪಡೆದುಕೊಳ್ಳಲು 9B ಮತ್ತು -B ಕೂಡಿಸಿ.
3A+2B=6,18A+8B=42
ತೆಗೆದುಹಾಕುವಿಕೆ ಮೂಲಕ ಪರಿಹರಿಸಲು, ಚರಾಂಶಗಳಲ್ಲಿನ ಗುಣಾಂಕಗಳು ಎರಡು ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದೇ ಆಗಿರಬೇಕು ಈ ಮೂಲಕ ಇತರೆಯಿಂದ ಒಂದು ಸಮೀಕರಣವನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ ಚರಾಂಶವನ್ನು ರದ್ದುಗೊಳಿಸಲಾಗುತ್ತದೆ.
18\times 3A+18\times 2B=18\times 6,3\times 18A+3\times 8B=3\times 42
3A ಮತ್ತು 18A ಸಮವಾಗಿ ಮಾಡಲು, ಮೊದಲ ಸಮೀಕರಣದ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು 18 ಎರಡನೇ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು 3 ರಿಂದ ಗುಣಿಸಿ.
54A+36B=108,54A+24B=126
ಸರಳೀಕೃತಗೊಳಿಸಿ.
54A-54A+36B-24B=108-126
ಸಮ ಚಿಹ್ನೆಯ ಪ್ರತಿ ಬದಿಯಲ್ಲಿ ಪದಗಳಂತಹವುಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ 54A+36B=108 ದಿಂದ 54A+24B=126 ಕಳೆಯಿರಿ.
36B-24B=108-126
-54A ಗೆ 54A ಸೇರಿಸಿ. ನಿಯಮಗಳು 54A ಮತ್ತು -54A ರದ್ದುಗೊಳಿಸಲಾಗಿದೆ, ಈ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದಾಗ ಏಕೈಕ ಚರಾಂಶದ ಜೊತೆಗೆ ಸಮೀಕರಣವನ್ನು ಉಳಿಸಿದೆ.
12B=108-126
-24B ಗೆ 36B ಸೇರಿಸಿ.
12B=-18
-126 ಗೆ 108 ಸೇರಿಸಿ.
B=-\frac{3}{2}
12 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
18A+8\left(-\frac{3}{2}\right)=42
18A+8B=42 ನಲ್ಲಿ B ಗಾಗಿ -\frac{3}{2} ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ A ಪರಿಹರಿಸಬಹುದು.
18A-12=42
-\frac{3}{2} ಅನ್ನು 8 ಬಾರಿ ಗುಣಿಸಿ.
18A=54
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 12 ಸೇರಿಸಿ.
A=3
18 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
A=3,B=-\frac{3}{2}
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}