\left. \begin{array} { l } { ( 4 - \sqrt { 3 } ) ( 4 + \sqrt { 3 } ) } \\ { ( 1 + \sqrt { 5 } ) ^ { 2 } - \sqrt { 20 } } \end{array} \right.
ವಿಂಗಡಿಸು
6,13
ಮೌಲ್ಯಮಾಪನ
13,\ 6
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
sort(16-\left(\sqrt{3}\right)^{2},\left(1+\sqrt{5}\right)^{2}-\sqrt{20})
\left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. ವರ್ಗ 4.
sort(16-3,\left(1+\sqrt{5}\right)^{2}-\sqrt{20})
\sqrt{3} ವರ್ಗವು 3 ಆಗಿದೆ.
sort(13,\left(1+\sqrt{5}\right)^{2}-\sqrt{20})
13 ಪಡೆದುಕೊಳ್ಳಲು 16 ದಿಂದ 3 ಕಳೆಯಿರಿ.
sort(13,1+2\sqrt{5}+\left(\sqrt{5}\right)^{2}-\sqrt{20})
\left(1+\sqrt{5}\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
sort(13,1+2\sqrt{5}+5-\sqrt{20})
\sqrt{5} ವರ್ಗವು 5 ಆಗಿದೆ.
sort(13,6+2\sqrt{5}-\sqrt{20})
6 ಪಡೆದುಕೊಳ್ಳಲು 1 ಮತ್ತು 5 ಸೇರಿಸಿ.
sort(13,6+2\sqrt{5}-2\sqrt{5})
ಅಪವರ್ತನ 20=2^{2}\times 5. ವರ್ಗಮೂಲಗಳ \sqrt{2^{2}}\sqrt{5} ಉತ್ಪನ್ನವಾಗಿ \sqrt{2^{2}\times 5} ಉತ್ಪನ್ನದ ವರ್ಗಮೂಲವನ್ನು ಪುನಃ ಬರೆಯಿರಿ. 2^{2} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
sort(13,6)
0 ಪಡೆದುಕೊಳ್ಳಲು 2\sqrt{5} ಮತ್ತು -2\sqrt{5} ಕೂಡಿಸಿ.
13
ಪಟ್ಟಿಯನ್ನು ವಿಂಗಡಿಸಲು, ಒಂದೇ ಮೂಲಾಂಶ 13 ದಿಂದ ಆರಂಭಿಸಿ.
6,13
ಹೊಸ ಪಟ್ಟಿಯಲ್ಲಿನ ಸೂಕ್ತ ಸ್ಥಾನದಲ್ಲಿ 6 ಸೇರ್ಪಡಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}