p, a, b ಪರಿಹರಿಸಿ
p=2.5
a=6
b=0.2
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
5\times 2=4p
ಮೊದಲನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು 140, 28,35 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
10=4p
10 ಪಡೆದುಕೊಳ್ಳಲು 5 ಮತ್ತು 2 ಗುಣಿಸಿ.
4p=10
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
p=\frac{10}{4}
4 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
p=\frac{5}{2}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{10}{4} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
10\times \frac{0.9}{1.5}=a
ಎರಡನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. 10 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
10\times \frac{9}{15}=a
ಗಣಕ ಮತ್ತು ಛೇದ ಎರಡನ್ನೂ 10 ರಿಂದ ಗುಣಾಕಾರ ಮಾಡುವ ಮೂಲಕ \frac{0.9}{1.5} ವಿಸ್ತರಿಸಿ.
10\times \frac{3}{5}=a
3 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{9}{15} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
6=a
6 ಪಡೆದುಕೊಳ್ಳಲು 10 ಮತ್ತು \frac{3}{5} ಗುಣಿಸಿ.
a=6
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
\frac{36}{90}=\frac{b}{0.5}
ಮೂರನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. ಗಣಕ ಮತ್ತು ಛೇದ ಎರಡನ್ನೂ 10 ರಿಂದ ಗುಣಾಕಾರ ಮಾಡುವ ಮೂಲಕ \frac{3.6}{9} ವಿಸ್ತರಿಸಿ.
\frac{2}{5}=\frac{b}{0.5}
18 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{36}{90} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
\frac{b}{0.5}=\frac{2}{5}
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
b=\frac{2}{5}\times 0.5
0.5 ಮೂಲಕ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
b=\frac{1}{5}
\frac{1}{5} ಪಡೆದುಕೊಳ್ಳಲು \frac{2}{5} ಮತ್ತು 0.5 ಗುಣಿಸಿ.
p=\frac{5}{2} a=6 b=\frac{1}{5}
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}