ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x, y, z, a, b, c ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

y=\left(4-\sqrt{15}\right)^{2}+\frac{1}{\left(4-\sqrt{15}\right)^{2}}
ಎರಡನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. ವೇರಿಯೇಬಲ್‌ಗಳ ತಿಳಿದ ಮೌಲ್ಯಗಳನ್ನು ಸಮೀಕರಣಕ್ಕೆ ಸೇರ್ಪಡಿಸಿ.
y=16-8\sqrt{15}+\left(\sqrt{15}\right)^{2}+\frac{1}{\left(4-\sqrt{15}\right)^{2}}
\left(4-\sqrt{15}\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
y=16-8\sqrt{15}+15+\frac{1}{\left(4-\sqrt{15}\right)^{2}}
\sqrt{15} ವರ್ಗವು 15 ಆಗಿದೆ.
y=31-8\sqrt{15}+\frac{1}{\left(4-\sqrt{15}\right)^{2}}
31 ಪಡೆದುಕೊಳ್ಳಲು 16 ಮತ್ತು 15 ಸೇರಿಸಿ.
y=31-8\sqrt{15}+\frac{1}{16-8\sqrt{15}+\left(\sqrt{15}\right)^{2}}
\left(4-\sqrt{15}\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
y=31-8\sqrt{15}+\frac{1}{16-8\sqrt{15}+15}
\sqrt{15} ವರ್ಗವು 15 ಆಗಿದೆ.
y=31-8\sqrt{15}+\frac{1}{31-8\sqrt{15}}
31 ಪಡೆದುಕೊಳ್ಳಲು 16 ಮತ್ತು 15 ಸೇರಿಸಿ.
y=31-8\sqrt{15}+\frac{31+8\sqrt{15}}{\left(31-8\sqrt{15}\right)\left(31+8\sqrt{15}\right)}
\frac{1}{31-8\sqrt{15}} ಅನ್ನು ಗುಣಿಸುವ ಮೂಲಕ ಛೇದವನ್ನು ಮತ್ತು 31+8\sqrt{15} ಮೂಲಕ ಛೇದ ಮತ್ತು ಅಂಶವನ್ನು ತರ್ಕಬದ್ಧವಾಗಿಸಿ.
y=31-8\sqrt{15}+\frac{31+8\sqrt{15}}{31^{2}-\left(-8\sqrt{15}\right)^{2}}
\left(31-8\sqrt{15}\right)\left(31+8\sqrt{15}\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
y=31-8\sqrt{15}+\frac{31+8\sqrt{15}}{961-\left(-8\sqrt{15}\right)^{2}}
2 ನ ಘಾತಕ್ಕೆ 31 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 961 ಪಡೆಯಿರಿ.
y=31-8\sqrt{15}+\frac{31+8\sqrt{15}}{961-\left(-8\right)^{2}\left(\sqrt{15}\right)^{2}}
\left(-8\sqrt{15}\right)^{2} ವಿಸ್ತರಿಸಿ.
y=31-8\sqrt{15}+\frac{31+8\sqrt{15}}{961-64\left(\sqrt{15}\right)^{2}}
2 ನ ಘಾತಕ್ಕೆ -8 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 64 ಪಡೆಯಿರಿ.
y=31-8\sqrt{15}+\frac{31+8\sqrt{15}}{961-64\times 15}
\sqrt{15} ವರ್ಗವು 15 ಆಗಿದೆ.
y=31-8\sqrt{15}+\frac{31+8\sqrt{15}}{961-960}
960 ಪಡೆದುಕೊಳ್ಳಲು 64 ಮತ್ತು 15 ಗುಣಿಸಿ.
y=31-8\sqrt{15}+\frac{31+8\sqrt{15}}{1}
1 ಪಡೆದುಕೊಳ್ಳಲು 961 ದಿಂದ 960 ಕಳೆಯಿರಿ.
y=31-8\sqrt{15}+31+8\sqrt{15}
ಯಾವುದನ್ನಾದರೂ ಒಂದರಿಂದ ಭಾಗಿಸಿದರೆ ಅದನ್ನೇ ನೀಡುತ್ತದೆ.
y=62-8\sqrt{15}+8\sqrt{15}
62 ಪಡೆದುಕೊಳ್ಳಲು 31 ಮತ್ತು 31 ಸೇರಿಸಿ.
y=62
0 ಪಡೆದುಕೊಳ್ಳಲು -8\sqrt{15} ಮತ್ತು 8\sqrt{15} ಕೂಡಿಸಿ.
z=62
ಮೂರನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. ವೇರಿಯೇಬಲ್‌ಗಳ ತಿಳಿದ ಮೌಲ್ಯಗಳನ್ನು ಸಮೀಕರಣಕ್ಕೆ ಸೇರ್ಪಡಿಸಿ.
a=62
ನಾಲ್ಕನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. ವೇರಿಯೇಬಲ್‌ಗಳ ತಿಳಿದ ಮೌಲ್ಯಗಳನ್ನು ಸಮೀಕರಣಕ್ಕೆ ಸೇರ್ಪಡಿಸಿ.
b=62
ಐದನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. ವೇರಿಯೇಬಲ್‌ಗಳ ತಿಳಿದ ಮೌಲ್ಯಗಳನ್ನು ಸಮೀಕರಣಕ್ಕೆ ಸೇರ್ಪಡಿಸಿ.
c=62
(6) ಸಮೀಕರಣವನ್ನು ಪರಿಗಣಿಸಿ. ವೇರಿಯೇಬಲ್‌ಗಳ ತಿಳಿದ ಮೌಲ್ಯಗಳನ್ನು ಸಮೀಕರಣಕ್ಕೆ ಸೇರ್ಪಡಿಸಿ.
x=4-\sqrt{15} y=62 z=62 a=62 b=62 c=62
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.