f, x, g, h, j ಪರಿಹರಿಸಿ
j=i
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
h=i
ನಾಲ್ಕನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
i=g
ಮೂರನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. ವೇರಿಯೇಬಲ್ಗಳ ತಿಳಿದ ಮೌಲ್ಯಗಳನ್ನು ಸಮೀಕರಣಕ್ಕೆ ಸೇರ್ಪಡಿಸಿ.
g=i
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
i=f\times 5
ಎರಡನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. ವೇರಿಯೇಬಲ್ಗಳ ತಿಳಿದ ಮೌಲ್ಯಗಳನ್ನು ಸಮೀಕರಣಕ್ಕೆ ಸೇರ್ಪಡಿಸಿ.
\frac{i}{5}=f
5 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
\frac{1}{5}i=f
\frac{1}{5}i ಪಡೆಯಲು 5 ರಿಂದ i ವಿಭಾಗಿಸಿ.
f=\frac{1}{5}i
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
\frac{1}{5}ix=4x+5
ಮೊದಲನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. ವೇರಿಯೇಬಲ್ಗಳ ತಿಳಿದ ಮೌಲ್ಯಗಳನ್ನು ಸಮೀಕರಣಕ್ಕೆ ಸೇರ್ಪಡಿಸಿ.
\frac{1}{5}ix-4x=5
ಎರಡೂ ಕಡೆಗಳಿಂದ 4x ಕಳೆಯಿರಿ.
\left(-4+\frac{1}{5}i\right)x=5
\left(-4+\frac{1}{5}i\right)x ಪಡೆದುಕೊಳ್ಳಲು \frac{1}{5}ix ಮತ್ತು -4x ಕೂಡಿಸಿ.
x=\frac{5}{-4+\frac{1}{5}i}
-4+\frac{1}{5}i ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=\frac{5\left(-4-\frac{1}{5}i\right)}{\left(-4+\frac{1}{5}i\right)\left(-4-\frac{1}{5}i\right)}
\frac{5}{-4+\frac{1}{5}i} ನ ಗಣಕ ಮತ್ತು ಛೇದವನ್ನು, -4-\frac{1}{5}i ಗಣಕದ ಸಂಕೀರ್ಣ ಸಂಯೋಗದಿಂದ ಗುಣಿಸಿ.
x=\frac{-20-i}{\frac{401}{25}}
\frac{5\left(-4-\frac{1}{5}i\right)}{\left(-4+\frac{1}{5}i\right)\left(-4-\frac{1}{5}i\right)} ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
x=-\frac{500}{401}-\frac{25}{401}i
-\frac{500}{401}-\frac{25}{401}i ಪಡೆಯಲು \frac{401}{25} ರಿಂದ -20-i ವಿಭಾಗಿಸಿ.
f=\frac{1}{5}i x=-\frac{500}{401}-\frac{25}{401}i g=i h=i j=i
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}