ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image
ಅಪವರ್ತನ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

det(\left(\begin{matrix}3&-2&1\\5&3&0\\1&1&-2\end{matrix}\right))
ಕರ್ಣಗಳ ವಿಧಾನವನ್ನು ಬಳಸಿಕೊಂಡು ಮಾತೃಕೆ ನಿರ್ಧಾರಕವನ್ನು ಹುಡುಕಿ.
\left(\begin{matrix}3&-2&1&3&-2\\5&3&0&5&3\\1&1&-2&1&1\end{matrix}\right)
ನಾಲ್ಕನೇ ಮತ್ತು ಐದನೇ ಲಂಬಸಾಲುಗಳಾಗಿ ಮೊದಲ ಎರಡು ಲಂಬಸಾಲುಗಳನ್ನು ಪುನರಾವರ್ತಿಸುವ ಮೂಲಕ ಮೂಲ ಮಾತೃಕೆಗಳನ್ನು ವಿಸ್ತರಿಸಿ.
3\times 3\left(-2\right)+5=-13
ಮೇಲಿನ ಎಡ ನಮೂದುನಲ್ಲಿ ಆರಂಭಿಸಿ, ಕರ್ಣಗಳು ಉದ್ದಕ್ಕೂ ಕೆಳಗೆ ಗುಣಿಸಿ ಮತ್ತು ಫಲಿತಾಂಶದ ಉತ್ಪನ್ನಗಳನ್ನು ಸೇರಿಸಿ.
3-2\times 5\left(-2\right)=23
ಕೆಳಗಿನ ಎಡ ನಮೂದುನಲ್ಲಿ ಆರಂಭಿಸಿ, ಕರ್ಣಗಳು ಉದ್ದಕ್ಕೂ ಮೇಲೆ ಗುಣಿಸಿ ಮತ್ತು ಫಲಿತಾಂಶದ ಉತ್ಪನ್ನಗಳನ್ನು ಸೇರಿಸಿ.
-13-23
ಕೆಳಮುಖ ಕರ್ಣೀಯ ಉತ್ಪನ್ನಗಳ ಮೊತ್ತದಿಂದ ಮೇಲ್ಮುಖ ಕರ್ಣೀಯ ಉತ್ಪನ್ನಗಳ ಮೊತ್ತವನ್ನು ಕಳೆಯಿರಿ.
-36
-13 ದಿಂದ 23 ಕಳೆಯಿರಿ.
det(\left(\begin{matrix}3&-2&1\\5&3&0\\1&1&-2\end{matrix}\right))
ಕಡಿಮೆ ಪ್ರಮಾಣದಲ್ಲಿ ವಿಸ್ತರಣೆಯ ವಿಧಾನವನ್ನು ಬಳಸಿಕೊಂಡು ಮಾತೃಕೆ ನಿರ್ಧಾರಕವನ್ನು ಹುಡುಕಿ (ಸಹಅಪವರ್ತನಗಳ ಮೂಲಕ ವಿಸ್ತರಣೆ ಎಂದು ಸಹ ಕರೆಯಲಾಗುತ್ತದೆ).
3det(\left(\begin{matrix}3&0\\1&-2\end{matrix}\right))-\left(-2det(\left(\begin{matrix}5&0\\1&-2\end{matrix}\right))\right)+det(\left(\begin{matrix}5&3\\1&1\end{matrix}\right))
ಚಿಕ್ಕವುಗಳನ್ನು ವಿಸ್ತರಿಸಲು, ಮೊದಲ ಅಡ್ಡಸಾಲಿನ ಪ್ರತಿ ಮೂಲಾಂಶವನ್ನು ಅದರ ಚಿಕ್ಕವುಗಳಿಂದ ಗುಣಿಸಿ, ಇದು ಆ ಮೂಲಾಂಶವನ್ನು ಒಳಗೊಂಡಿರುವ ಅಡ್ಡಸಾಲು ಮತ್ತು ಲಂಬಸಾಲನ್ನು ಅಳಿಸುವ ಮೂಲಕ, ತದನಂತರ ಮೂಲಾಂಶದ ಸ್ಥಾನದ ಚಿಹ್ನೆಯನ್ನು ಗುಣಿಸುವ ಮೂಲಕ ರಚಿಸಲಾದ 2\times 2 ಮಾತೃಕೆಯ ನಿರ್ಧಾರಕ ಆಗಿರುತ್ತದೆ.
3\times 3\left(-2\right)-\left(-2\times 5\left(-2\right)\right)+5-3
2\times 2 ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) ಗೆ, ನಿರ್ಧಾರಕ ad-bc ಆಗಿದೆ.
3\left(-6\right)-\left(-2\left(-10\right)\right)+2
ಸರಳೀಕೃತಗೊಳಿಸಿ.
-36
ಅಂತಿಮ ಫಲಿತಾಂಶವಾಗಿ ಪಡೆಯಲು ಪದಗಳನ್ನು ಸೇರಿಸಿ.