\left\{ \begin{array} { r } { 5 p - q = 7 } \\ { - 2 p + 3 q = 5 } \end{array} \right.
p, q ಪರಿಹರಿಸಿ
p=2
q=3
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
5p-q=7,-2p+3q=5
ಪರ್ಯಾಯವನ್ನು ಬಳಸಿಕೊಂಡು ಸಮೀಕರಣಗಳ ಜೋಡಿಯನ್ನು ಪರಿಹರಿಸಲು, ಮೊದಲು ಚರಾಂಶಗಳ ಒಂದಕ್ಕೆ ಸಮೀಕರಣಗಳ ಒಂದನ್ನು ಪರಿಹರಿಸಿ. ತದನಂತರ ಇತರ ಸಮೀಕರಣದಲ್ಲಿ ಆ ಚರಾಂಶಕ್ಕೆ ಫಲಿತಾಂಶವನ್ನು ಬದಲಿಸಿ.
5p-q=7
ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದನ್ನು ಆರಿಸಿ ಹಾಗೂ ಸಮ ಚಿಹ್ನೆಯ ಎಡಭಾಗದಲ್ಲಿ p ಪ್ರತ್ಯೇಕಿಸುವ ಮೂಲಕ p ಗಾಗಿ ಅದನ್ನು ಪರಿಹರಿಸಿ.
5p=q+7
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ q ಸೇರಿಸಿ.
p=\frac{1}{5}\left(q+7\right)
5 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
p=\frac{1}{5}q+\frac{7}{5}
q+7 ಅನ್ನು \frac{1}{5} ಬಾರಿ ಗುಣಿಸಿ.
-2\left(\frac{1}{5}q+\frac{7}{5}\right)+3q=5
ಇತರ ಸಮೀಕರಣ -2p+3q=5 ನಲ್ಲಿ p ಗಾಗಿ \frac{7+q}{5} ಬದಲಿಸಿ.
-\frac{2}{5}q-\frac{14}{5}+3q=5
\frac{7+q}{5} ಅನ್ನು -2 ಬಾರಿ ಗುಣಿಸಿ.
\frac{13}{5}q-\frac{14}{5}=5
3q ಗೆ -\frac{2q}{5} ಸೇರಿಸಿ.
\frac{13}{5}q=\frac{39}{5}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{14}{5} ಸೇರಿಸಿ.
q=3
ಭಿನ್ನಾಂಕದ ವ್ಯುತ್ಕ್ರಮದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿದಾಗ ಯಾವುದು ಒಂದೇ ಬರುತ್ತದೆಯೋ, \frac{13}{5} ದಿಂದ ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
p=\frac{1}{5}\times 3+\frac{7}{5}
p=\frac{1}{5}q+\frac{7}{5} ನಲ್ಲಿ q ಗಾಗಿ 3 ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ p ಪರಿಹರಿಸಬಹುದು.
p=\frac{3+7}{5}
3 ಅನ್ನು \frac{1}{5} ಬಾರಿ ಗುಣಿಸಿ.
p=2
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{3}{5} ಗೆ \frac{7}{5} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
p=2,q=3
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
5p-q=7,-2p+3q=5
ಸಮೀಕರಣಗಳನ್ನು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಿಸಿ ತದನಂತರ ಸಮೀಕರಣಗಳ ವ್ಯವಸ್ಥೆಯನ್ನು ಪರಿಹರಿಸಲು ಮ್ಯಾಟ್ರಿಸೈಸ್ ಬಳಸಿ.
\left(\begin{matrix}5&-1\\-2&3\end{matrix}\right)\left(\begin{matrix}p\\q\end{matrix}\right)=\left(\begin{matrix}7\\5\end{matrix}\right)
ಸಮೀಕರಣಗಳನ್ನು ಮಾತೃಕೆ ರೂಪದಲ್ಲಿ ಬರೆಯಿರಿ.
inverse(\left(\begin{matrix}5&-1\\-2&3\end{matrix}\right))\left(\begin{matrix}5&-1\\-2&3\end{matrix}\right)\left(\begin{matrix}p\\q\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\-2&3\end{matrix}\right))\left(\begin{matrix}7\\5\end{matrix}\right)
\left(\begin{matrix}5&-1\\-2&3\end{matrix}\right) ನ ವಿಲೋಮ ಮಾತೃಕೆ ಮೂಲಕ ಸಮೀಕರಣವನ್ನು ಎಡಕ್ಕೆ ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}p\\q\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\-2&3\end{matrix}\right))\left(\begin{matrix}7\\5\end{matrix}\right)
ಮಾತೃಕೆ ಮತ್ತು ಅದರ ವಿಲೋಮದ ವ್ಯುತ್ಪನ್ನವು ಗುರುತು ಮಾತೃಕೆ ಆಗಿದೆ.
\left(\begin{matrix}p\\q\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\-2&3\end{matrix}\right))\left(\begin{matrix}7\\5\end{matrix}\right)
ಸಮಾನ ಚಿಹ್ನೆಯ ಎಡ ಬದಿಯಲ್ಲಿ ಮಾತೃಕೆಗಳನ್ನು ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}p\\q\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5\times 3-\left(-\left(-2\right)\right)}&-\frac{-1}{5\times 3-\left(-\left(-2\right)\right)}\\-\frac{-2}{5\times 3-\left(-\left(-2\right)\right)}&\frac{5}{5\times 3-\left(-\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}7\\5\end{matrix}\right)
2\times 2 ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) ಗೆ; ವಿಲೋಮ ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ಆಗಿದೆ, ಆದ್ದರಿಂದ ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಸಮೀಕರಣವನ್ನು ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಗುಣಾಕಾರ ಸಮಸ್ಯೆಯೆಂದು ಮರುಬರೆಯಬಹುದು.
\left(\begin{matrix}p\\q\end{matrix}\right)=\left(\begin{matrix}\frac{3}{13}&\frac{1}{13}\\\frac{2}{13}&\frac{5}{13}\end{matrix}\right)\left(\begin{matrix}7\\5\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
\left(\begin{matrix}p\\q\end{matrix}\right)=\left(\begin{matrix}\frac{3}{13}\times 7+\frac{1}{13}\times 5\\\frac{2}{13}\times 7+\frac{5}{13}\times 5\end{matrix}\right)
ಮಾತೃಕೆಗಳನ್ನು ಗುಣಿಸಿ.
\left(\begin{matrix}p\\q\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
p=2,q=3
ಮಾತೃಕೆ ಅಂಶಗಳು p ಮತ್ತು q ಬೇರೆ ಮಾಡಿ.
5p-q=7,-2p+3q=5
ತೆಗೆದುಹಾಕುವಿಕೆ ಮೂಲಕ ಪರಿಹರಿಸಲು, ಚರಾಂಶಗಳಲ್ಲಿನ ಗುಣಾಂಕಗಳು ಎರಡು ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದೇ ಆಗಿರಬೇಕು ಈ ಮೂಲಕ ಇತರೆಯಿಂದ ಒಂದು ಸಮೀಕರಣವನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ ಚರಾಂಶವನ್ನು ರದ್ದುಗೊಳಿಸಲಾಗುತ್ತದೆ.
-2\times 5p-2\left(-1\right)q=-2\times 7,5\left(-2\right)p+5\times 3q=5\times 5
5p ಮತ್ತು -2p ಸಮವಾಗಿ ಮಾಡಲು, ಮೊದಲ ಸಮೀಕರಣದ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು -2 ಎರಡನೇ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು 5 ರಿಂದ ಗುಣಿಸಿ.
-10p+2q=-14,-10p+15q=25
ಸರಳೀಕೃತಗೊಳಿಸಿ.
-10p+10p+2q-15q=-14-25
ಸಮ ಚಿಹ್ನೆಯ ಪ್ರತಿ ಬದಿಯಲ್ಲಿ ಪದಗಳಂತಹವುಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ -10p+2q=-14 ದಿಂದ -10p+15q=25 ಕಳೆಯಿರಿ.
2q-15q=-14-25
10p ಗೆ -10p ಸೇರಿಸಿ. ನಿಯಮಗಳು -10p ಮತ್ತು 10p ರದ್ದುಗೊಳಿಸಲಾಗಿದೆ, ಈ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದಾಗ ಏಕೈಕ ಚರಾಂಶದ ಜೊತೆಗೆ ಸಮೀಕರಣವನ್ನು ಉಳಿಸಿದೆ.
-13q=-14-25
-15q ಗೆ 2q ಸೇರಿಸಿ.
-13q=-39
-25 ಗೆ -14 ಸೇರಿಸಿ.
q=3
-13 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
-2p+3\times 3=5
-2p+3q=5 ನಲ್ಲಿ q ಗಾಗಿ 3 ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ p ಪರಿಹರಿಸಬಹುದು.
-2p+9=5
3 ಅನ್ನು 3 ಬಾರಿ ಗುಣಿಸಿ.
-2p=-4
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 9 ಕಳೆಯಿರಿ.
p=2
-2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
p=2,q=3
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}