ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
y, x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

y=-\frac{4}{5}x-9
ಮೊದಲನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. \frac{-4}{5} ಭಿನ್ನಾಂಶವನ್ನು ಋಣಾತ್ಮಕ ಚಿಹ್ನೆಯನ್ನು ಕಳೆಯುವುದರ ಮೂಲಕ -\frac{4}{5} ಎಂಬುದಾಗಿ ಮರಳಿ ಬರೆಯಬಹುದು.
3\left(-\frac{4}{5}x-9\right)+8x=-45
ಇತರ ಸಮೀಕರಣ 3y+8x=-45 ನಲ್ಲಿ y ಗಾಗಿ -\frac{4x}{5}-9 ಬದಲಿಸಿ.
-\frac{12}{5}x-27+8x=-45
-\frac{4x}{5}-9 ಅನ್ನು 3 ಬಾರಿ ಗುಣಿಸಿ.
\frac{28}{5}x-27=-45
8x ಗೆ -\frac{12x}{5} ಸೇರಿಸಿ.
\frac{28}{5}x=-18
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 27 ಸೇರಿಸಿ.
x=-\frac{45}{14}
ಭಿನ್ನಾಂಕದ ವ್ಯುತ್ಕ್ರಮದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿದಾಗ ಯಾವುದು ಒಂದೇ ಬರುತ್ತದೆಯೋ, \frac{28}{5} ದಿಂದ ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
y=-\frac{4}{5}\left(-\frac{45}{14}\right)-9
y=-\frac{4}{5}x-9 ನಲ್ಲಿ x ಗಾಗಿ -\frac{45}{14} ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ y ಪರಿಹರಿಸಬಹುದು.
y=\frac{18}{7}-9
ಸಂಖ್ಯಾಕಾರ ಸಮಯ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದ ಸಮಯ ಛೇದವನ್ನು ಗುಣಿಸುವ ಮೂಲಕ -\frac{45}{14} ಅನ್ನು -\frac{4}{5} ಬಾರಿ ಗುಣಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
y=-\frac{45}{7}
\frac{18}{7} ಗೆ -9 ಸೇರಿಸಿ.
y=-\frac{45}{7},x=-\frac{45}{14}
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
y=-\frac{4}{5}x-9
ಮೊದಲನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. \frac{-4}{5} ಭಿನ್ನಾಂಶವನ್ನು ಋಣಾತ್ಮಕ ಚಿಹ್ನೆಯನ್ನು ಕಳೆಯುವುದರ ಮೂಲಕ -\frac{4}{5} ಎಂಬುದಾಗಿ ಮರಳಿ ಬರೆಯಬಹುದು.
y+\frac{4}{5}x=-9
ಎರಡೂ ಬದಿಗಳಿಗೆ \frac{4}{5}x ಸೇರಿಸಿ.
y+\frac{8x}{3}=-15
ಎರಡನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. ಎರಡೂ ಬದಿಗಳಿಗೆ \frac{8x}{3} ಸೇರಿಸಿ.
3y+8x=-45
3 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
y+\frac{4}{5}x=-9,3y+8x=-45
ಸಮೀಕರಣಗಳನ್ನು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಿಸಿ ತದನಂತರ ಸಮೀಕರಣಗಳ ವ್ಯವಸ್ಥೆಯನ್ನು ಪರಿಹರಿಸಲು ಮ್ಯಾಟ್ರಿಸೈಸ್ ಬಳಸಿ.
\left(\begin{matrix}1&\frac{4}{5}\\3&8\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-9\\-45\end{matrix}\right)
ಸಮೀಕರಣಗಳನ್ನು ಮಾತೃಕೆ ರೂಪದಲ್ಲಿ ಬರೆಯಿರಿ.
inverse(\left(\begin{matrix}1&\frac{4}{5}\\3&8\end{matrix}\right))\left(\begin{matrix}1&\frac{4}{5}\\3&8\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{4}{5}\\3&8\end{matrix}\right))\left(\begin{matrix}-9\\-45\end{matrix}\right)
\left(\begin{matrix}1&\frac{4}{5}\\3&8\end{matrix}\right) ನ ವಿಲೋಮ ಮಾತೃಕೆ ಮೂಲಕ ಸಮೀಕರಣವನ್ನು ಎಡಕ್ಕೆ ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{4}{5}\\3&8\end{matrix}\right))\left(\begin{matrix}-9\\-45\end{matrix}\right)
ಮಾತೃಕೆ ಮತ್ತು ಅದರ ವಿಲೋಮದ ವ್ಯುತ್ಪನ್ನವು ಗುರುತು ಮಾತೃಕೆ ಆಗಿದೆ.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{4}{5}\\3&8\end{matrix}\right))\left(\begin{matrix}-9\\-45\end{matrix}\right)
ಸಮಾನ ಚಿಹ್ನೆಯ ಎಡ ಬದಿಯಲ್ಲಿ ಮಾತೃಕೆಗಳನ್ನು ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{8}{8-\frac{4}{5}\times 3}&-\frac{\frac{4}{5}}{8-\frac{4}{5}\times 3}\\-\frac{3}{8-\frac{4}{5}\times 3}&\frac{1}{8-\frac{4}{5}\times 3}\end{matrix}\right)\left(\begin{matrix}-9\\-45\end{matrix}\right)
2\times 2 ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) ಗೆ; ವಿಲೋಮ ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ಆಗಿದೆ, ಆದ್ದರಿಂದ ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಸಮೀಕರಣವನ್ನು ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಗುಣಾಕಾರ ಸಮಸ್ಯೆಯೆಂದು ಮರುಬರೆಯಬಹುದು.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{10}{7}&-\frac{1}{7}\\-\frac{15}{28}&\frac{5}{28}\end{matrix}\right)\left(\begin{matrix}-9\\-45\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{10}{7}\left(-9\right)-\frac{1}{7}\left(-45\right)\\-\frac{15}{28}\left(-9\right)+\frac{5}{28}\left(-45\right)\end{matrix}\right)
ಮಾತೃಕೆಗಳನ್ನು ಗುಣಿಸಿ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{45}{7}\\-\frac{45}{14}\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
y=-\frac{45}{7},x=-\frac{45}{14}
ಮಾತೃಕೆ ಅಂಶಗಳು y ಮತ್ತು x ಬೇರೆ ಮಾಡಿ.
y=-\frac{4}{5}x-9
ಮೊದಲನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. \frac{-4}{5} ಭಿನ್ನಾಂಶವನ್ನು ಋಣಾತ್ಮಕ ಚಿಹ್ನೆಯನ್ನು ಕಳೆಯುವುದರ ಮೂಲಕ -\frac{4}{5} ಎಂಬುದಾಗಿ ಮರಳಿ ಬರೆಯಬಹುದು.
y+\frac{4}{5}x=-9
ಎರಡೂ ಬದಿಗಳಿಗೆ \frac{4}{5}x ಸೇರಿಸಿ.
y+\frac{8x}{3}=-15
ಎರಡನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. ಎರಡೂ ಬದಿಗಳಿಗೆ \frac{8x}{3} ಸೇರಿಸಿ.
3y+8x=-45
3 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
y+\frac{4}{5}x=-9,3y+8x=-45
ತೆಗೆದುಹಾಕುವಿಕೆ ಮೂಲಕ ಪರಿಹರಿಸಲು, ಚರಾಂಶಗಳಲ್ಲಿನ ಗುಣಾಂಕಗಳು ಎರಡು ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದೇ ಆಗಿರಬೇಕು ಈ ಮೂಲಕ ಇತರೆಯಿಂದ ಒಂದು ಸಮೀಕರಣವನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ ಚರಾಂಶವನ್ನು ರದ್ದುಗೊಳಿಸಲಾಗುತ್ತದೆ.
3y+3\times \frac{4}{5}x=3\left(-9\right),3y+8x=-45
y ಮತ್ತು 3y ಸಮವಾಗಿ ಮಾಡಲು, ಮೊದಲ ಸಮೀಕರಣದ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು 3 ಎರಡನೇ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು 1 ರಿಂದ ಗುಣಿಸಿ.
3y+\frac{12}{5}x=-27,3y+8x=-45
ಸರಳೀಕೃತಗೊಳಿಸಿ.
3y-3y+\frac{12}{5}x-8x=-27+45
ಸಮ ಚಿಹ್ನೆಯ ಪ್ರತಿ ಬದಿಯಲ್ಲಿ ಪದಗಳಂತಹವುಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ 3y+\frac{12}{5}x=-27 ದಿಂದ 3y+8x=-45 ಕಳೆಯಿರಿ.
\frac{12}{5}x-8x=-27+45
-3y ಗೆ 3y ಸೇರಿಸಿ. ನಿಯಮಗಳು 3y ಮತ್ತು -3y ರದ್ದುಗೊಳಿಸಲಾಗಿದೆ, ಈ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದಾಗ ಏಕೈಕ ಚರಾಂಶದ ಜೊತೆಗೆ ಸಮೀಕರಣವನ್ನು ಉಳಿಸಿದೆ.
-\frac{28}{5}x=-27+45
-8x ಗೆ \frac{12x}{5} ಸೇರಿಸಿ.
-\frac{28}{5}x=18
45 ಗೆ -27 ಸೇರಿಸಿ.
x=-\frac{45}{14}
ಭಿನ್ನಾಂಕದ ವ್ಯುತ್ಕ್ರಮದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿದಾಗ ಯಾವುದು ಒಂದೇ ಬರುತ್ತದೆಯೋ, -\frac{28}{5} ದಿಂದ ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
3y+8\left(-\frac{45}{14}\right)=-45
3y+8x=-45 ನಲ್ಲಿ x ಗಾಗಿ -\frac{45}{14} ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ y ಪರಿಹರಿಸಬಹುದು.
3y-\frac{180}{7}=-45
-\frac{45}{14} ಅನ್ನು 8 ಬಾರಿ ಗುಣಿಸಿ.
3y=-\frac{135}{7}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{180}{7} ಸೇರಿಸಿ.
y=-\frac{45}{7}
3 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
y=-\frac{45}{7},x=-\frac{45}{14}
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.