ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x, y ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\frac{2}{3}y-\frac{3}{4}x=0
ಎರಡನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{3}{4}x ಕಳೆಯಿರಿ.
x+y=204,-\frac{3}{4}x+\frac{2}{3}y=0
ಪರ್ಯಾಯವನ್ನು ಬಳಸಿಕೊಂಡು ಸಮೀಕರಣಗಳ ಜೋಡಿಯನ್ನು ಪರಿಹರಿಸಲು, ಮೊದಲು ಚರಾಂಶಗಳ ಒಂದಕ್ಕೆ ಸಮೀಕರಣಗಳ ಒಂದನ್ನು ಪರಿಹರಿಸಿ. ತದನಂತರ ಇತರ ಸಮೀಕರಣದಲ್ಲಿ ಆ ಚರಾಂಶಕ್ಕೆ ಫಲಿತಾಂಶವನ್ನು ಬದಲಿಸಿ.
x+y=204
ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದನ್ನು ಆರಿಸಿ ಹಾಗೂ ಸಮ ಚಿಹ್ನೆಯ ಎಡಭಾಗದಲ್ಲಿ x ಪ್ರತ್ಯೇಕಿಸುವ ಮೂಲಕ x ಗಾಗಿ ಅದನ್ನು ಪರಿಹರಿಸಿ.
x=-y+204
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ y ಕಳೆಯಿರಿ.
-\frac{3}{4}\left(-y+204\right)+\frac{2}{3}y=0
ಇತರ ಸಮೀಕರಣ -\frac{3}{4}x+\frac{2}{3}y=0 ನಲ್ಲಿ x ಗಾಗಿ -y+204 ಬದಲಿಸಿ.
\frac{3}{4}y-153+\frac{2}{3}y=0
-y+204 ಅನ್ನು -\frac{3}{4} ಬಾರಿ ಗುಣಿಸಿ.
\frac{17}{12}y-153=0
\frac{2y}{3} ಗೆ \frac{3y}{4} ಸೇರಿಸಿ.
\frac{17}{12}y=153
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 153 ಸೇರಿಸಿ.
y=108
ಭಿನ್ನಾಂಕದ ವ್ಯುತ್ಕ್ರಮದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿದಾಗ ಯಾವುದು ಒಂದೇ ಬರುತ್ತದೆಯೋ, \frac{17}{12} ದಿಂದ ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=-108+204
x=-y+204 ನಲ್ಲಿ y ಗಾಗಿ 108 ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ x ಪರಿಹರಿಸಬಹುದು.
x=96
-108 ಗೆ 204 ಸೇರಿಸಿ.
x=96,y=108
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
\frac{2}{3}y-\frac{3}{4}x=0
ಎರಡನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{3}{4}x ಕಳೆಯಿರಿ.
x+y=204,-\frac{3}{4}x+\frac{2}{3}y=0
ಸಮೀಕರಣಗಳನ್ನು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಿಸಿ ತದನಂತರ ಸಮೀಕರಣಗಳ ವ್ಯವಸ್ಥೆಯನ್ನು ಪರಿಹರಿಸಲು ಮ್ಯಾಟ್ರಿಸೈಸ್ ಬಳಸಿ.
\left(\begin{matrix}1&1\\-\frac{3}{4}&\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}204\\0\end{matrix}\right)
ಸಮೀಕರಣಗಳನ್ನು ಮಾತೃಕೆ ರೂಪದಲ್ಲಿ ಬರೆಯಿರಿ.
inverse(\left(\begin{matrix}1&1\\-\frac{3}{4}&\frac{2}{3}\end{matrix}\right))\left(\begin{matrix}1&1\\-\frac{3}{4}&\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-\frac{3}{4}&\frac{2}{3}\end{matrix}\right))\left(\begin{matrix}204\\0\end{matrix}\right)
\left(\begin{matrix}1&1\\-\frac{3}{4}&\frac{2}{3}\end{matrix}\right) ನ ವಿಲೋಮ ಮಾತೃಕೆ ಮೂಲಕ ಸಮೀಕರಣವನ್ನು ಎಡಕ್ಕೆ ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-\frac{3}{4}&\frac{2}{3}\end{matrix}\right))\left(\begin{matrix}204\\0\end{matrix}\right)
ಮಾತೃಕೆ ಮತ್ತು ಅದರ ವಿಲೋಮದ ವ್ಯುತ್ಪನ್ನವು ಗುರುತು ಮಾತೃಕೆ ಆಗಿದೆ.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-\frac{3}{4}&\frac{2}{3}\end{matrix}\right))\left(\begin{matrix}204\\0\end{matrix}\right)
ಸಮಾನ ಚಿಹ್ನೆಯ ಎಡ ಬದಿಯಲ್ಲಿ ಮಾತೃಕೆಗಳನ್ನು ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{2}{3}}{\frac{2}{3}-\left(-\frac{3}{4}\right)}&-\frac{1}{\frac{2}{3}-\left(-\frac{3}{4}\right)}\\-\frac{-\frac{3}{4}}{\frac{2}{3}-\left(-\frac{3}{4}\right)}&\frac{1}{\frac{2}{3}-\left(-\frac{3}{4}\right)}\end{matrix}\right)\left(\begin{matrix}204\\0\end{matrix}\right)
2\times 2 ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) ಗೆ; ವಿಲೋಮ ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ಆಗಿದೆ, ಆದ್ದರಿಂದ ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಸಮೀಕರಣವನ್ನು ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಗುಣಾಕಾರ ಸಮಸ್ಯೆಯೆಂದು ಮರುಬರೆಯಬಹುದು.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{17}&-\frac{12}{17}\\\frac{9}{17}&\frac{12}{17}\end{matrix}\right)\left(\begin{matrix}204\\0\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{17}\times 204\\\frac{9}{17}\times 204\end{matrix}\right)
ಮಾತೃಕೆಗಳನ್ನು ಗುಣಿಸಿ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}96\\108\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
x=96,y=108
ಮಾತೃಕೆ ಅಂಶಗಳು x ಮತ್ತು y ಬೇರೆ ಮಾಡಿ.
\frac{2}{3}y-\frac{3}{4}x=0
ಎರಡನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{3}{4}x ಕಳೆಯಿರಿ.
x+y=204,-\frac{3}{4}x+\frac{2}{3}y=0
ತೆಗೆದುಹಾಕುವಿಕೆ ಮೂಲಕ ಪರಿಹರಿಸಲು, ಚರಾಂಶಗಳಲ್ಲಿನ ಗುಣಾಂಕಗಳು ಎರಡು ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದೇ ಆಗಿರಬೇಕು ಈ ಮೂಲಕ ಇತರೆಯಿಂದ ಒಂದು ಸಮೀಕರಣವನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ ಚರಾಂಶವನ್ನು ರದ್ದುಗೊಳಿಸಲಾಗುತ್ತದೆ.
-\frac{3}{4}x-\frac{3}{4}y=-\frac{3}{4}\times 204,-\frac{3}{4}x+\frac{2}{3}y=0
x ಮತ್ತು -\frac{3x}{4} ಸಮವಾಗಿ ಮಾಡಲು, ಮೊದಲ ಸಮೀಕರಣದ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು -\frac{3}{4} ಎರಡನೇ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು 1 ರಿಂದ ಗುಣಿಸಿ.
-\frac{3}{4}x-\frac{3}{4}y=-153,-\frac{3}{4}x+\frac{2}{3}y=0
ಸರಳೀಕೃತಗೊಳಿಸಿ.
-\frac{3}{4}x+\frac{3}{4}x-\frac{3}{4}y-\frac{2}{3}y=-153
ಸಮ ಚಿಹ್ನೆಯ ಪ್ರತಿ ಬದಿಯಲ್ಲಿ ಪದಗಳಂತಹವುಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ -\frac{3}{4}x-\frac{3}{4}y=-153 ದಿಂದ -\frac{3}{4}x+\frac{2}{3}y=0 ಕಳೆಯಿರಿ.
-\frac{3}{4}y-\frac{2}{3}y=-153
\frac{3x}{4} ಗೆ -\frac{3x}{4} ಸೇರಿಸಿ. ನಿಯಮಗಳು -\frac{3x}{4} ಮತ್ತು \frac{3x}{4} ರದ್ದುಗೊಳಿಸಲಾಗಿದೆ, ಈ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದಾಗ ಏಕೈಕ ಚರಾಂಶದ ಜೊತೆಗೆ ಸಮೀಕರಣವನ್ನು ಉಳಿಸಿದೆ.
-\frac{17}{12}y=-153
-\frac{2y}{3} ಗೆ -\frac{3y}{4} ಸೇರಿಸಿ.
y=108
ಭಿನ್ನಾಂಕದ ವ್ಯುತ್ಕ್ರಮದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿದಾಗ ಯಾವುದು ಒಂದೇ ಬರುತ್ತದೆಯೋ, -\frac{17}{12} ದಿಂದ ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
-\frac{3}{4}x+\frac{2}{3}\times 108=0
-\frac{3}{4}x+\frac{2}{3}y=0 ನಲ್ಲಿ y ಗಾಗಿ 108 ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ x ಪರಿಹರಿಸಬಹುದು.
-\frac{3}{4}x+72=0
108 ಅನ್ನು \frac{2}{3} ಬಾರಿ ಗುಣಿಸಿ.
-\frac{3}{4}x=-72
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 72 ಕಳೆಯಿರಿ.
x=96
ಭಿನ್ನಾಂಕದ ವ್ಯುತ್ಕ್ರಮದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿದಾಗ ಯಾವುದು ಒಂದೇ ಬರುತ್ತದೆಯೋ, -\frac{3}{4} ದಿಂದ ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=96,y=108
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.