ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x, y ಪರಿಹರಿಸಿ
Tick mark Image
x, y ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

ty+2-x=0
ಮೊದಲನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. ಎರಡೂ ಕಡೆಗಳಿಂದ x ಕಳೆಯಿರಿ.
ty-x=-2
ಎರಡೂ ಕಡೆಗಳಿಂದ 2 ಕಳೆಯಿರಿ. ಶೂನ್ಯದಿಂದ ಏನನ್ನಾದರೂ ಕಳೆದರೆ ಅದರ ಋಣಾತ್ಮಕವನ್ನು ನೀಡುತ್ತದೆ.
ty-x=-2,x^{2}+4y^{2}=4
ಪರ್ಯಾಯವನ್ನು ಬಳಸಿಕೊಂಡು ಸಮೀಕರಣಗಳ ಜೋಡಿಯನ್ನು ಪರಿಹರಿಸಲು, ಮೊದಲು ಚರಾಂಶಗಳ ಒಂದಕ್ಕೆ ಸಮೀಕರಣಗಳ ಒಂದನ್ನು ಪರಿಹರಿಸಿ. ತದನಂತರ ಇತರ ಸಮೀಕರಣದಲ್ಲಿ ಆ ಚರಾಂಶಕ್ಕೆ ಫಲಿತಾಂಶವನ್ನು ಬದಲಿಸಿ.
ty-x=-2
ಸಮ ಚಿಹ್ನೆಯ ಎಡಭಾಗದಲ್ಲಿ y ಪ್ರತ್ಯೇಕಿಸುವ ಮೂಲಕ y ಗಾಗಿ ty-x=-2 ಪರಿಹರಿಸಿ.
ty=x-2
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ -x ಕಳೆಯಿರಿ.
y=\frac{1}{t}x-\frac{2}{t}
t ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+4\left(\frac{1}{t}x-\frac{2}{t}\right)^{2}=4
ಇತರ ಸಮೀಕರಣ x^{2}+4y^{2}=4 ನಲ್ಲಿ y ಗಾಗಿ \frac{1}{t}x-\frac{2}{t} ಬದಲಿಸಿ.
x^{2}+4\left(\left(\frac{1}{t}\right)^{2}x^{2}+2\left(-\frac{2}{t}\right)\times \frac{1}{t}x+\left(-\frac{2}{t}\right)^{2}\right)=4
ವರ್ಗ \frac{1}{t}x-\frac{2}{t}.
x^{2}+4\times \left(\frac{1}{t}\right)^{2}x^{2}+8\left(-\frac{2}{t}\right)\times \frac{1}{t}x+4\left(-\frac{2}{t}\right)^{2}=4
\left(\frac{1}{t}\right)^{2}x^{2}+2\left(-\frac{2}{t}\right)\times \frac{1}{t}x+\left(-\frac{2}{t}\right)^{2} ಅನ್ನು 4 ಬಾರಿ ಗುಣಿಸಿ.
\left(1+4\times \left(\frac{1}{t}\right)^{2}\right)x^{2}+8\left(-\frac{2}{t}\right)\times \frac{1}{t}x+4\left(-\frac{2}{t}\right)^{2}=4
4\times \left(\frac{1}{t}\right)^{2}x^{2} ಗೆ x^{2} ಸೇರಿಸಿ.
\left(1+4\times \left(\frac{1}{t}\right)^{2}\right)x^{2}+8\left(-\frac{2}{t}\right)\times \frac{1}{t}x+4\left(-\frac{2}{t}\right)^{2}-4=0
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 4 ಕಳೆಯಿರಿ.
x=\frac{-8\left(-\frac{2}{t}\right)\times \frac{1}{t}±\sqrt{\left(8\left(-\frac{2}{t}\right)\times \frac{1}{t}\right)^{2}-4\left(1+4\times \left(\frac{1}{t}\right)^{2}\right)\left(-4+\frac{16}{t^{2}}\right)}}{2\left(1+4\times \left(\frac{1}{t}\right)^{2}\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1+4\times \left(\frac{1}{t}\right)^{2}, b ಗೆ 4\times 2\times \frac{1}{t}\left(-\frac{2}{t}\right) ಮತ್ತು c ಗೆ \frac{16}{t^{2}}-4 ಬದಲಿಸಿ.
x=\frac{-8\left(-\frac{2}{t}\right)\times \frac{1}{t}±\sqrt{\frac{256}{t^{4}}-4\left(1+4\times \left(\frac{1}{t}\right)^{2}\right)\left(-4+\frac{16}{t^{2}}\right)}}{2\left(1+4\times \left(\frac{1}{t}\right)^{2}\right)}
ವರ್ಗ 4\times 2\times \frac{1}{t}\left(-\frac{2}{t}\right).
x=\frac{-8\left(-\frac{2}{t}\right)\times \frac{1}{t}±\sqrt{\frac{256}{t^{4}}+\left(-4-\frac{16}{t^{2}}\right)\left(-4+\frac{16}{t^{2}}\right)}}{2\left(1+4\times \left(\frac{1}{t}\right)^{2}\right)}
1+4\times \left(\frac{1}{t}\right)^{2} ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-8\left(-\frac{2}{t}\right)\times \frac{1}{t}±\sqrt{\frac{256}{t^{4}}+16-\frac{256}{t^{4}}}}{2\left(1+4\times \left(\frac{1}{t}\right)^{2}\right)}
\frac{16}{t^{2}}-4 ಅನ್ನು -4-\frac{16}{t^{2}} ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-8\left(-\frac{2}{t}\right)\times \frac{1}{t}±\sqrt{16}}{2\left(1+4\times \left(\frac{1}{t}\right)^{2}\right)}
-\frac{256}{t^{4}}+16 ಗೆ \frac{256}{t^{4}} ಸೇರಿಸಿ.
x=\frac{-8\left(-\frac{2}{t}\right)\times \frac{1}{t}±4}{2\left(1+4\times \left(\frac{1}{t}\right)^{2}\right)}
16 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{\frac{16}{t^{2}}±4}{2+\frac{8}{t^{2}}}
1+4\times \left(\frac{1}{t}\right)^{2} ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{4+\frac{16}{t^{2}}}{2+\frac{8}{t^{2}}}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{\frac{16}{t^{2}}±4}{2+\frac{8}{t^{2}}} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 4 ಗೆ \frac{16}{t^{2}} ಸೇರಿಸಿ.
x=2
2+\frac{8}{t^{2}} ದಿಂದ 4+\frac{16}{t^{2}} ಭಾಗಿಸಿ.
x=\frac{-4+\frac{16}{t^{2}}}{2+\frac{8}{t^{2}}}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{\frac{16}{t^{2}}±4}{2+\frac{8}{t^{2}}} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \frac{16}{t^{2}} ದಿಂದ 4 ಕಳೆಯಿರಿ.
x=-\frac{2\left(t^{2}-4\right)}{t^{2}+4}
2+\frac{8}{t^{2}} ದಿಂದ \frac{16}{t^{2}}-4 ಭಾಗಿಸಿ.
y=\frac{1}{t}\times 2-\frac{2}{t}
x ಗೆ ಎರಡು ಪರಿಹಾರಗಳಿವೆ: 2 ಮತ್ತು -\frac{2\left(t^{2}-4\right)}{4+t^{2}}. ಎರಡೂ ಸಮೀಕರಣಗಳನ್ನು ತೃಪ್ತಿಗೊಳಿಸುವ y ಗೆ ಅನುಗುಣವಾದ ಪರಿಹಾರ ಹುಡುಕಲು y=\frac{1}{t}x-\frac{2}{t} ಸಮೀಕರಣದಲ್ಲಿ x ಗಾಗಿ 2 ಬದಲಿಸಿ.
y=2\times \frac{1}{t}-\frac{2}{t}
2 ಅನ್ನು \frac{1}{t} ಬಾರಿ ಗುಣಿಸಿ.
y=\frac{1}{t}\left(-\frac{2\left(t^{2}-4\right)}{t^{2}+4}\right)-\frac{2}{t}
ಇದೀಗ y=\frac{1}{t}x-\frac{2}{t} ಸಮೀಕರಣದಲ್ಲಿ x ಗಾಗಿ -\frac{2\left(t^{2}-4\right)}{4+t^{2}} ಅನ್ನು ಬದಲಿಸಿ ಹಾಗೂ ಎರಡೂ ಸಮೀಕರಣಗಳನ್ನು ಪೂರೈಸುವ y ಗೆ ಅನುಗುಣವಾದ ಪರಿಹಾರ ಹುಡುಕಲು ಪರಿಹರಿಸಿ.
y=\left(-\frac{2\left(t^{2}-4\right)}{t^{2}+4}\right)\times \frac{1}{t}-\frac{2}{t}
-\frac{2\left(t^{2}-4\right)}{4+t^{2}} ಅನ್ನು \frac{1}{t} ಬಾರಿ ಗುಣಿಸಿ.
y=2\times \frac{1}{t}-\frac{2}{t},x=2\text{ or }y=\left(-\frac{2\left(t^{2}-4\right)}{t^{2}+4}\right)\times \frac{1}{t}-\frac{2}{t},x=-\frac{2\left(t^{2}-4\right)}{t^{2}+4}
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.