ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
a, b ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

a+b=3,a-b=7
ಪರ್ಯಾಯವನ್ನು ಬಳಸಿಕೊಂಡು ಸಮೀಕರಣಗಳ ಜೋಡಿಯನ್ನು ಪರಿಹರಿಸಲು, ಮೊದಲು ಚರಾಂಶಗಳ ಒಂದಕ್ಕೆ ಸಮೀಕರಣಗಳ ಒಂದನ್ನು ಪರಿಹರಿಸಿ. ತದನಂತರ ಇತರ ಸಮೀಕರಣದಲ್ಲಿ ಆ ಚರಾಂಶಕ್ಕೆ ಫಲಿತಾಂಶವನ್ನು ಬದಲಿಸಿ.
a+b=3
ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದನ್ನು ಆರಿಸಿ ಹಾಗೂ ಸಮ ಚಿಹ್ನೆಯ ಎಡಭಾಗದಲ್ಲಿ a ಪ್ರತ್ಯೇಕಿಸುವ ಮೂಲಕ a ಗಾಗಿ ಅದನ್ನು ಪರಿಹರಿಸಿ.
a=-b+3
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ b ಕಳೆಯಿರಿ.
-b+3-b=7
ಇತರ ಸಮೀಕರಣ a-b=7 ನಲ್ಲಿ a ಗಾಗಿ -b+3 ಬದಲಿಸಿ.
-2b+3=7
-b ಗೆ -b ಸೇರಿಸಿ.
-2b=4
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 3 ಕಳೆಯಿರಿ.
b=-2
-2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
a=-\left(-2\right)+3
a=-b+3 ನಲ್ಲಿ b ಗಾಗಿ -2 ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ a ಪರಿಹರಿಸಬಹುದು.
a=2+3
-2 ಅನ್ನು -1 ಬಾರಿ ಗುಣಿಸಿ.
a=5
2 ಗೆ 3 ಸೇರಿಸಿ.
a=5,b=-2
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
a+b=3,a-b=7
ಸಮೀಕರಣಗಳನ್ನು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಿಸಿ ತದನಂತರ ಸಮೀಕರಣಗಳ ವ್ಯವಸ್ಥೆಯನ್ನು ಪರಿಹರಿಸಲು ಮ್ಯಾಟ್ರಿಸೈಸ್ ಬಳಸಿ.
\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}3\\7\end{matrix}\right)
ಸಮೀಕರಣಗಳನ್ನು ಮಾತೃಕೆ ರೂಪದಲ್ಲಿ ಬರೆಯಿರಿ.
inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\7\end{matrix}\right)
\left(\begin{matrix}1&1\\1&-1\end{matrix}\right) ನ ವಿಲೋಮ ಮಾತೃಕೆ ಮೂಲಕ ಸಮೀಕರಣವನ್ನು ಎಡಕ್ಕೆ ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\7\end{matrix}\right)
ಮಾತೃಕೆ ಮತ್ತು ಅದರ ವಿಲೋಮದ ವ್ಯುತ್ಪನ್ನವು ಗುರುತು ಮಾತೃಕೆ ಆಗಿದೆ.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\7\end{matrix}\right)
ಸಮಾನ ಚಿಹ್ನೆಯ ಎಡ ಬದಿಯಲ್ಲಿ ಮಾತೃಕೆಗಳನ್ನು ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-1}&-\frac{1}{-1-1}\\-\frac{1}{-1-1}&\frac{1}{-1-1}\end{matrix}\right)\left(\begin{matrix}3\\7\end{matrix}\right)
2\times 2 ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) ಗೆ; ವಿಲೋಮ ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ಆಗಿದೆ, ಆದ್ದರಿಂದ ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಸಮೀಕರಣವನ್ನು ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಗುಣಾಕಾರ ಸಮಸ್ಯೆಯೆಂದು ಮರುಬರೆಯಬಹುದು.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}3\\7\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 3+\frac{1}{2}\times 7\\\frac{1}{2}\times 3-\frac{1}{2}\times 7\end{matrix}\right)
ಮಾತೃಕೆಗಳನ್ನು ಗುಣಿಸಿ.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}5\\-2\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
a=5,b=-2
ಮಾತೃಕೆ ಅಂಶಗಳು a ಮತ್ತು b ಬೇರೆ ಮಾಡಿ.
a+b=3,a-b=7
ತೆಗೆದುಹಾಕುವಿಕೆ ಮೂಲಕ ಪರಿಹರಿಸಲು, ಚರಾಂಶಗಳಲ್ಲಿನ ಗುಣಾಂಕಗಳು ಎರಡು ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದೇ ಆಗಿರಬೇಕು ಈ ಮೂಲಕ ಇತರೆಯಿಂದ ಒಂದು ಸಮೀಕರಣವನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ ಚರಾಂಶವನ್ನು ರದ್ದುಗೊಳಿಸಲಾಗುತ್ತದೆ.
a-a+b+b=3-7
ಸಮ ಚಿಹ್ನೆಯ ಪ್ರತಿ ಬದಿಯಲ್ಲಿ ಪದಗಳಂತಹವುಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ a+b=3 ದಿಂದ a-b=7 ಕಳೆಯಿರಿ.
b+b=3-7
-a ಗೆ a ಸೇರಿಸಿ. ನಿಯಮಗಳು a ಮತ್ತು -a ರದ್ದುಗೊಳಿಸಲಾಗಿದೆ, ಈ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದಾಗ ಏಕೈಕ ಚರಾಂಶದ ಜೊತೆಗೆ ಸಮೀಕರಣವನ್ನು ಉಳಿಸಿದೆ.
2b=3-7
b ಗೆ b ಸೇರಿಸಿ.
2b=-4
-7 ಗೆ 3 ಸೇರಿಸಿ.
b=-2
2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
a-\left(-2\right)=7
a-b=7 ನಲ್ಲಿ b ಗಾಗಿ -2 ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ a ಪರಿಹರಿಸಬಹುದು.
a+2=7
-2 ಅನ್ನು -1 ಬಾರಿ ಗುಣಿಸಿ.
a=5
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 2 ಕಳೆಯಿರಿ.
a=5,b=-2
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.