\left\{ \begin{array} { l } { B - 7 P = - 39 } \\ { B - 11 P = 9 } \end{array} \right.
B, P ಪರಿಹರಿಸಿ
B=-123
P=-12
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
B-7P=-39,B-11P=9
ಪರ್ಯಾಯವನ್ನು ಬಳಸಿಕೊಂಡು ಸಮೀಕರಣಗಳ ಜೋಡಿಯನ್ನು ಪರಿಹರಿಸಲು, ಮೊದಲು ಚರಾಂಶಗಳ ಒಂದಕ್ಕೆ ಸಮೀಕರಣಗಳ ಒಂದನ್ನು ಪರಿಹರಿಸಿ. ತದನಂತರ ಇತರ ಸಮೀಕರಣದಲ್ಲಿ ಆ ಚರಾಂಶಕ್ಕೆ ಫಲಿತಾಂಶವನ್ನು ಬದಲಿಸಿ.
B-7P=-39
ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದನ್ನು ಆರಿಸಿ ಹಾಗೂ ಸಮ ಚಿಹ್ನೆಯ ಎಡಭಾಗದಲ್ಲಿ B ಪ್ರತ್ಯೇಕಿಸುವ ಮೂಲಕ B ಗಾಗಿ ಅದನ್ನು ಪರಿಹರಿಸಿ.
B=7P-39
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 7P ಸೇರಿಸಿ.
7P-39-11P=9
ಇತರ ಸಮೀಕರಣ B-11P=9 ನಲ್ಲಿ B ಗಾಗಿ 7P-39 ಬದಲಿಸಿ.
-4P-39=9
-11P ಗೆ 7P ಸೇರಿಸಿ.
-4P=48
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 39 ಸೇರಿಸಿ.
P=-12
-4 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
B=7\left(-12\right)-39
B=7P-39 ನಲ್ಲಿ P ಗಾಗಿ -12 ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ B ಪರಿಹರಿಸಬಹುದು.
B=-84-39
-12 ಅನ್ನು 7 ಬಾರಿ ಗುಣಿಸಿ.
B=-123
-84 ಗೆ -39 ಸೇರಿಸಿ.
B=-123,P=-12
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
B-7P=-39,B-11P=9
ಸಮೀಕರಣಗಳನ್ನು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಿಸಿ ತದನಂತರ ಸಮೀಕರಣಗಳ ವ್ಯವಸ್ಥೆಯನ್ನು ಪರಿಹರಿಸಲು ಮ್ಯಾಟ್ರಿಸೈಸ್ ಬಳಸಿ.
\left(\begin{matrix}1&-7\\1&-11\end{matrix}\right)\left(\begin{matrix}B\\P\end{matrix}\right)=\left(\begin{matrix}-39\\9\end{matrix}\right)
ಸಮೀಕರಣಗಳನ್ನು ಮಾತೃಕೆ ರೂಪದಲ್ಲಿ ಬರೆಯಿರಿ.
inverse(\left(\begin{matrix}1&-7\\1&-11\end{matrix}\right))\left(\begin{matrix}1&-7\\1&-11\end{matrix}\right)\left(\begin{matrix}B\\P\end{matrix}\right)=inverse(\left(\begin{matrix}1&-7\\1&-11\end{matrix}\right))\left(\begin{matrix}-39\\9\end{matrix}\right)
\left(\begin{matrix}1&-7\\1&-11\end{matrix}\right) ನ ವಿಲೋಮ ಮಾತೃಕೆ ಮೂಲಕ ಸಮೀಕರಣವನ್ನು ಎಡಕ್ಕೆ ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}B\\P\end{matrix}\right)=inverse(\left(\begin{matrix}1&-7\\1&-11\end{matrix}\right))\left(\begin{matrix}-39\\9\end{matrix}\right)
ಮಾತೃಕೆ ಮತ್ತು ಅದರ ವಿಲೋಮದ ವ್ಯುತ್ಪನ್ನವು ಗುರುತು ಮಾತೃಕೆ ಆಗಿದೆ.
\left(\begin{matrix}B\\P\end{matrix}\right)=inverse(\left(\begin{matrix}1&-7\\1&-11\end{matrix}\right))\left(\begin{matrix}-39\\9\end{matrix}\right)
ಸಮಾನ ಚಿಹ್ನೆಯ ಎಡ ಬದಿಯಲ್ಲಿ ಮಾತೃಕೆಗಳನ್ನು ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}B\\P\end{matrix}\right)=\left(\begin{matrix}-\frac{11}{-11-\left(-7\right)}&-\frac{-7}{-11-\left(-7\right)}\\-\frac{1}{-11-\left(-7\right)}&\frac{1}{-11-\left(-7\right)}\end{matrix}\right)\left(\begin{matrix}-39\\9\end{matrix}\right)
2\times 2 ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) ಗೆ; ವಿಲೋಮ ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ಆಗಿದೆ, ಆದ್ದರಿಂದ ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಸಮೀಕರಣವನ್ನು ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಗುಣಾಕಾರ ಸಮಸ್ಯೆಯೆಂದು ಮರುಬರೆಯಬಹುದು.
\left(\begin{matrix}B\\P\end{matrix}\right)=\left(\begin{matrix}\frac{11}{4}&-\frac{7}{4}\\\frac{1}{4}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}-39\\9\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
\left(\begin{matrix}B\\P\end{matrix}\right)=\left(\begin{matrix}\frac{11}{4}\left(-39\right)-\frac{7}{4}\times 9\\\frac{1}{4}\left(-39\right)-\frac{1}{4}\times 9\end{matrix}\right)
ಮಾತೃಕೆಗಳನ್ನು ಗುಣಿಸಿ.
\left(\begin{matrix}B\\P\end{matrix}\right)=\left(\begin{matrix}-123\\-12\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
B=-123,P=-12
ಮಾತೃಕೆ ಅಂಶಗಳು B ಮತ್ತು P ಬೇರೆ ಮಾಡಿ.
B-7P=-39,B-11P=9
ತೆಗೆದುಹಾಕುವಿಕೆ ಮೂಲಕ ಪರಿಹರಿಸಲು, ಚರಾಂಶಗಳಲ್ಲಿನ ಗುಣಾಂಕಗಳು ಎರಡು ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದೇ ಆಗಿರಬೇಕು ಈ ಮೂಲಕ ಇತರೆಯಿಂದ ಒಂದು ಸಮೀಕರಣವನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ ಚರಾಂಶವನ್ನು ರದ್ದುಗೊಳಿಸಲಾಗುತ್ತದೆ.
B-B-7P+11P=-39-9
ಸಮ ಚಿಹ್ನೆಯ ಪ್ರತಿ ಬದಿಯಲ್ಲಿ ಪದಗಳಂತಹವುಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ B-7P=-39 ದಿಂದ B-11P=9 ಕಳೆಯಿರಿ.
-7P+11P=-39-9
-B ಗೆ B ಸೇರಿಸಿ. ನಿಯಮಗಳು B ಮತ್ತು -B ರದ್ದುಗೊಳಿಸಲಾಗಿದೆ, ಈ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದಾಗ ಏಕೈಕ ಚರಾಂಶದ ಜೊತೆಗೆ ಸಮೀಕರಣವನ್ನು ಉಳಿಸಿದೆ.
4P=-39-9
11P ಗೆ -7P ಸೇರಿಸಿ.
4P=-48
-9 ಗೆ -39 ಸೇರಿಸಿ.
P=-12
4 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
B-11\left(-12\right)=9
B-11P=9 ನಲ್ಲಿ P ಗಾಗಿ -12 ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ B ಪರಿಹರಿಸಬಹುದು.
B+132=9
-12 ಅನ್ನು -11 ಬಾರಿ ಗುಣಿಸಿ.
B=-123
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 132 ಕಳೆಯಿರಿ.
B=-123,P=-12
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}