\left\{ \begin{array} { l } { 4 ( x + y ) - 3 ( x - y ) = 10 } \\ { 2 ( x + y ) - 3 ( x - y ) = 2 } \end{array} \right.
x, y ಪರಿಹರಿಸಿ
x=3
y=1
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
4x+4y-3\left(x-y\right)=10
ಮೊದಲನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. x+y ದಿಂದ 4 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
4x+4y-3x+3y=10
x-y ದಿಂದ -3 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x+4y+3y=10
x ಪಡೆದುಕೊಳ್ಳಲು 4x ಮತ್ತು -3x ಕೂಡಿಸಿ.
x+7y=10
7y ಪಡೆದುಕೊಳ್ಳಲು 4y ಮತ್ತು 3y ಕೂಡಿಸಿ.
2x+2y-3\left(x-y\right)=2
ಎರಡನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. x+y ದಿಂದ 2 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
2x+2y-3x+3y=2
x-y ದಿಂದ -3 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
-x+2y+3y=2
-x ಪಡೆದುಕೊಳ್ಳಲು 2x ಮತ್ತು -3x ಕೂಡಿಸಿ.
-x+5y=2
5y ಪಡೆದುಕೊಳ್ಳಲು 2y ಮತ್ತು 3y ಕೂಡಿಸಿ.
x+7y=10,-x+5y=2
ಪರ್ಯಾಯವನ್ನು ಬಳಸಿಕೊಂಡು ಸಮೀಕರಣಗಳ ಜೋಡಿಯನ್ನು ಪರಿಹರಿಸಲು, ಮೊದಲು ಚರಾಂಶಗಳ ಒಂದಕ್ಕೆ ಸಮೀಕರಣಗಳ ಒಂದನ್ನು ಪರಿಹರಿಸಿ. ತದನಂತರ ಇತರ ಸಮೀಕರಣದಲ್ಲಿ ಆ ಚರಾಂಶಕ್ಕೆ ಫಲಿತಾಂಶವನ್ನು ಬದಲಿಸಿ.
x+7y=10
ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದನ್ನು ಆರಿಸಿ ಹಾಗೂ ಸಮ ಚಿಹ್ನೆಯ ಎಡಭಾಗದಲ್ಲಿ x ಪ್ರತ್ಯೇಕಿಸುವ ಮೂಲಕ x ಗಾಗಿ ಅದನ್ನು ಪರಿಹರಿಸಿ.
x=-7y+10
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 7y ಕಳೆಯಿರಿ.
-\left(-7y+10\right)+5y=2
ಇತರ ಸಮೀಕರಣ -x+5y=2 ನಲ್ಲಿ x ಗಾಗಿ -7y+10 ಬದಲಿಸಿ.
7y-10+5y=2
-7y+10 ಅನ್ನು -1 ಬಾರಿ ಗುಣಿಸಿ.
12y-10=2
5y ಗೆ 7y ಸೇರಿಸಿ.
12y=12
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 10 ಸೇರಿಸಿ.
y=1
12 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=-7+10
x=-7y+10 ನಲ್ಲಿ y ಗಾಗಿ 1 ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ x ಪರಿಹರಿಸಬಹುದು.
x=3
-7 ಗೆ 10 ಸೇರಿಸಿ.
x=3,y=1
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
4x+4y-3\left(x-y\right)=10
ಮೊದಲನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. x+y ದಿಂದ 4 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
4x+4y-3x+3y=10
x-y ದಿಂದ -3 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x+4y+3y=10
x ಪಡೆದುಕೊಳ್ಳಲು 4x ಮತ್ತು -3x ಕೂಡಿಸಿ.
x+7y=10
7y ಪಡೆದುಕೊಳ್ಳಲು 4y ಮತ್ತು 3y ಕೂಡಿಸಿ.
2x+2y-3\left(x-y\right)=2
ಎರಡನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. x+y ದಿಂದ 2 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
2x+2y-3x+3y=2
x-y ದಿಂದ -3 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
-x+2y+3y=2
-x ಪಡೆದುಕೊಳ್ಳಲು 2x ಮತ್ತು -3x ಕೂಡಿಸಿ.
-x+5y=2
5y ಪಡೆದುಕೊಳ್ಳಲು 2y ಮತ್ತು 3y ಕೂಡಿಸಿ.
x+7y=10,-x+5y=2
ಸಮೀಕರಣಗಳನ್ನು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಿಸಿ ತದನಂತರ ಸಮೀಕರಣಗಳ ವ್ಯವಸ್ಥೆಯನ್ನು ಪರಿಹರಿಸಲು ಮ್ಯಾಟ್ರಿಸೈಸ್ ಬಳಸಿ.
\left(\begin{matrix}1&7\\-1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\2\end{matrix}\right)
ಸಮೀಕರಣಗಳನ್ನು ಮಾತೃಕೆ ರೂಪದಲ್ಲಿ ಬರೆಯಿರಿ.
inverse(\left(\begin{matrix}1&7\\-1&5\end{matrix}\right))\left(\begin{matrix}1&7\\-1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&7\\-1&5\end{matrix}\right))\left(\begin{matrix}10\\2\end{matrix}\right)
\left(\begin{matrix}1&7\\-1&5\end{matrix}\right) ನ ವಿಲೋಮ ಮಾತೃಕೆ ಮೂಲಕ ಸಮೀಕರಣವನ್ನು ಎಡಕ್ಕೆ ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&7\\-1&5\end{matrix}\right))\left(\begin{matrix}10\\2\end{matrix}\right)
ಮಾತೃಕೆ ಮತ್ತು ಅದರ ವಿಲೋಮದ ವ್ಯುತ್ಪನ್ನವು ಗುರುತು ಮಾತೃಕೆ ಆಗಿದೆ.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&7\\-1&5\end{matrix}\right))\left(\begin{matrix}10\\2\end{matrix}\right)
ಸಮಾನ ಚಿಹ್ನೆಯ ಎಡ ಬದಿಯಲ್ಲಿ ಮಾತೃಕೆಗಳನ್ನು ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5-7\left(-1\right)}&-\frac{7}{5-7\left(-1\right)}\\-\frac{-1}{5-7\left(-1\right)}&\frac{1}{5-7\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}10\\2\end{matrix}\right)
2\times 2 ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) ಗೆ; ವಿಲೋಮ ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ಆಗಿದೆ, ಆದ್ದರಿಂದ ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಸಮೀಕರಣವನ್ನು ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಗುಣಾಕಾರ ಸಮಸ್ಯೆಯೆಂದು ಮರುಬರೆಯಬಹುದು.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{12}&-\frac{7}{12}\\\frac{1}{12}&\frac{1}{12}\end{matrix}\right)\left(\begin{matrix}10\\2\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{12}\times 10-\frac{7}{12}\times 2\\\frac{1}{12}\times 10+\frac{1}{12}\times 2\end{matrix}\right)
ಮಾತೃಕೆಗಳನ್ನು ಗುಣಿಸಿ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\1\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
x=3,y=1
ಮಾತೃಕೆ ಅಂಶಗಳು x ಮತ್ತು y ಬೇರೆ ಮಾಡಿ.
4x+4y-3\left(x-y\right)=10
ಮೊದಲನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. x+y ದಿಂದ 4 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
4x+4y-3x+3y=10
x-y ದಿಂದ -3 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x+4y+3y=10
x ಪಡೆದುಕೊಳ್ಳಲು 4x ಮತ್ತು -3x ಕೂಡಿಸಿ.
x+7y=10
7y ಪಡೆದುಕೊಳ್ಳಲು 4y ಮತ್ತು 3y ಕೂಡಿಸಿ.
2x+2y-3\left(x-y\right)=2
ಎರಡನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. x+y ದಿಂದ 2 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
2x+2y-3x+3y=2
x-y ದಿಂದ -3 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
-x+2y+3y=2
-x ಪಡೆದುಕೊಳ್ಳಲು 2x ಮತ್ತು -3x ಕೂಡಿಸಿ.
-x+5y=2
5y ಪಡೆದುಕೊಳ್ಳಲು 2y ಮತ್ತು 3y ಕೂಡಿಸಿ.
x+7y=10,-x+5y=2
ತೆಗೆದುಹಾಕುವಿಕೆ ಮೂಲಕ ಪರಿಹರಿಸಲು, ಚರಾಂಶಗಳಲ್ಲಿನ ಗುಣಾಂಕಗಳು ಎರಡು ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದೇ ಆಗಿರಬೇಕು ಈ ಮೂಲಕ ಇತರೆಯಿಂದ ಒಂದು ಸಮೀಕರಣವನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ ಚರಾಂಶವನ್ನು ರದ್ದುಗೊಳಿಸಲಾಗುತ್ತದೆ.
-x-7y=-10,-x+5y=2
x ಮತ್ತು -x ಸಮವಾಗಿ ಮಾಡಲು, ಮೊದಲ ಸಮೀಕರಣದ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು -1 ಎರಡನೇ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು 1 ರಿಂದ ಗುಣಿಸಿ.
-x+x-7y-5y=-10-2
ಸಮ ಚಿಹ್ನೆಯ ಪ್ರತಿ ಬದಿಯಲ್ಲಿ ಪದಗಳಂತಹವುಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ -x-7y=-10 ದಿಂದ -x+5y=2 ಕಳೆಯಿರಿ.
-7y-5y=-10-2
x ಗೆ -x ಸೇರಿಸಿ. ನಿಯಮಗಳು -x ಮತ್ತು x ರದ್ದುಗೊಳಿಸಲಾಗಿದೆ, ಈ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದಾಗ ಏಕೈಕ ಚರಾಂಶದ ಜೊತೆಗೆ ಸಮೀಕರಣವನ್ನು ಉಳಿಸಿದೆ.
-12y=-10-2
-5y ಗೆ -7y ಸೇರಿಸಿ.
-12y=-12
-2 ಗೆ -10 ಸೇರಿಸಿ.
y=1
-12 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
-x+5=2
-x+5y=2 ನಲ್ಲಿ y ಗಾಗಿ 1 ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ x ಪರಿಹರಿಸಬಹುದು.
-x=-3
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 5 ಕಳೆಯಿರಿ.
x=3
-1 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=3,y=1
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}