ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
m, n ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

3m-2n=-2,5m+8n=-60
ಪರ್ಯಾಯವನ್ನು ಬಳಸಿಕೊಂಡು ಸಮೀಕರಣಗಳ ಜೋಡಿಯನ್ನು ಪರಿಹರಿಸಲು, ಮೊದಲು ಚರಾಂಶಗಳ ಒಂದಕ್ಕೆ ಸಮೀಕರಣಗಳ ಒಂದನ್ನು ಪರಿಹರಿಸಿ. ತದನಂತರ ಇತರ ಸಮೀಕರಣದಲ್ಲಿ ಆ ಚರಾಂಶಕ್ಕೆ ಫಲಿತಾಂಶವನ್ನು ಬದಲಿಸಿ.
3m-2n=-2
ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದನ್ನು ಆರಿಸಿ ಹಾಗೂ ಸಮ ಚಿಹ್ನೆಯ ಎಡಭಾಗದಲ್ಲಿ m ಪ್ರತ್ಯೇಕಿಸುವ ಮೂಲಕ m ಗಾಗಿ ಅದನ್ನು ಪರಿಹರಿಸಿ.
3m=2n-2
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 2n ಸೇರಿಸಿ.
m=\frac{1}{3}\left(2n-2\right)
3 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
m=\frac{2}{3}n-\frac{2}{3}
-2+2n ಅನ್ನು \frac{1}{3} ಬಾರಿ ಗುಣಿಸಿ.
5\left(\frac{2}{3}n-\frac{2}{3}\right)+8n=-60
ಇತರ ಸಮೀಕರಣ 5m+8n=-60 ನಲ್ಲಿ m ಗಾಗಿ \frac{-2+2n}{3} ಬದಲಿಸಿ.
\frac{10}{3}n-\frac{10}{3}+8n=-60
\frac{-2+2n}{3} ಅನ್ನು 5 ಬಾರಿ ಗುಣಿಸಿ.
\frac{34}{3}n-\frac{10}{3}=-60
8n ಗೆ \frac{10n}{3} ಸೇರಿಸಿ.
\frac{34}{3}n=-\frac{170}{3}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{10}{3} ಸೇರಿಸಿ.
n=-5
ಭಿನ್ನಾಂಕದ ವ್ಯುತ್ಕ್ರಮದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿದಾಗ ಯಾವುದು ಒಂದೇ ಬರುತ್ತದೆಯೋ, \frac{34}{3} ದಿಂದ ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
m=\frac{2}{3}\left(-5\right)-\frac{2}{3}
m=\frac{2}{3}n-\frac{2}{3} ನಲ್ಲಿ n ಗಾಗಿ -5 ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ m ಪರಿಹರಿಸಬಹುದು.
m=\frac{-10-2}{3}
-5 ಅನ್ನು \frac{2}{3} ಬಾರಿ ಗುಣಿಸಿ.
m=-4
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ -\frac{10}{3} ಗೆ -\frac{2}{3} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
m=-4,n=-5
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
3m-2n=-2,5m+8n=-60
ಸಮೀಕರಣಗಳನ್ನು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಿಸಿ ತದನಂತರ ಸಮೀಕರಣಗಳ ವ್ಯವಸ್ಥೆಯನ್ನು ಪರಿಹರಿಸಲು ಮ್ಯಾಟ್ರಿಸೈಸ್ ಬಳಸಿ.
\left(\begin{matrix}3&-2\\5&8\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-2\\-60\end{matrix}\right)
ಸಮೀಕರಣಗಳನ್ನು ಮಾತೃಕೆ ರೂಪದಲ್ಲಿ ಬರೆಯಿರಿ.
inverse(\left(\begin{matrix}3&-2\\5&8\end{matrix}\right))\left(\begin{matrix}3&-2\\5&8\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\5&8\end{matrix}\right))\left(\begin{matrix}-2\\-60\end{matrix}\right)
\left(\begin{matrix}3&-2\\5&8\end{matrix}\right) ನ ವಿಲೋಮ ಮಾತೃಕೆ ಮೂಲಕ ಸಮೀಕರಣವನ್ನು ಎಡಕ್ಕೆ ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\5&8\end{matrix}\right))\left(\begin{matrix}-2\\-60\end{matrix}\right)
ಮಾತೃಕೆ ಮತ್ತು ಅದರ ವಿಲೋಮದ ವ್ಯುತ್ಪನ್ನವು ಗುರುತು ಮಾತೃಕೆ ಆಗಿದೆ.
\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\5&8\end{matrix}\right))\left(\begin{matrix}-2\\-60\end{matrix}\right)
ಸಮಾನ ಚಿಹ್ನೆಯ ಎಡ ಬದಿಯಲ್ಲಿ ಮಾತೃಕೆಗಳನ್ನು ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{8}{3\times 8-\left(-2\times 5\right)}&-\frac{-2}{3\times 8-\left(-2\times 5\right)}\\-\frac{5}{3\times 8-\left(-2\times 5\right)}&\frac{3}{3\times 8-\left(-2\times 5\right)}\end{matrix}\right)\left(\begin{matrix}-2\\-60\end{matrix}\right)
2\times 2 ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) ಗೆ; ವಿಲೋಮ ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ಆಗಿದೆ, ಆದ್ದರಿಂದ ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಸಮೀಕರಣವನ್ನು ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಗುಣಾಕಾರ ಸಮಸ್ಯೆಯೆಂದು ಮರುಬರೆಯಬಹುದು.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{4}{17}&\frac{1}{17}\\-\frac{5}{34}&\frac{3}{34}\end{matrix}\right)\left(\begin{matrix}-2\\-60\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{4}{17}\left(-2\right)+\frac{1}{17}\left(-60\right)\\-\frac{5}{34}\left(-2\right)+\frac{3}{34}\left(-60\right)\end{matrix}\right)
ಮಾತೃಕೆಗಳನ್ನು ಗುಣಿಸಿ.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-4\\-5\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
m=-4,n=-5
ಮಾತೃಕೆ ಅಂಶಗಳು m ಮತ್ತು n ಬೇರೆ ಮಾಡಿ.
3m-2n=-2,5m+8n=-60
ತೆಗೆದುಹಾಕುವಿಕೆ ಮೂಲಕ ಪರಿಹರಿಸಲು, ಚರಾಂಶಗಳಲ್ಲಿನ ಗುಣಾಂಕಗಳು ಎರಡು ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದೇ ಆಗಿರಬೇಕು ಈ ಮೂಲಕ ಇತರೆಯಿಂದ ಒಂದು ಸಮೀಕರಣವನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ ಚರಾಂಶವನ್ನು ರದ್ದುಗೊಳಿಸಲಾಗುತ್ತದೆ.
5\times 3m+5\left(-2\right)n=5\left(-2\right),3\times 5m+3\times 8n=3\left(-60\right)
3m ಮತ್ತು 5m ಸಮವಾಗಿ ಮಾಡಲು, ಮೊದಲ ಸಮೀಕರಣದ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು 5 ಎರಡನೇ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು 3 ರಿಂದ ಗುಣಿಸಿ.
15m-10n=-10,15m+24n=-180
ಸರಳೀಕೃತಗೊಳಿಸಿ.
15m-15m-10n-24n=-10+180
ಸಮ ಚಿಹ್ನೆಯ ಪ್ರತಿ ಬದಿಯಲ್ಲಿ ಪದಗಳಂತಹವುಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ 15m-10n=-10 ದಿಂದ 15m+24n=-180 ಕಳೆಯಿರಿ.
-10n-24n=-10+180
-15m ಗೆ 15m ಸೇರಿಸಿ. ನಿಯಮಗಳು 15m ಮತ್ತು -15m ರದ್ದುಗೊಳಿಸಲಾಗಿದೆ, ಈ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದಾಗ ಏಕೈಕ ಚರಾಂಶದ ಜೊತೆಗೆ ಸಮೀಕರಣವನ್ನು ಉಳಿಸಿದೆ.
-34n=-10+180
-24n ಗೆ -10n ಸೇರಿಸಿ.
-34n=170
180 ಗೆ -10 ಸೇರಿಸಿ.
n=-5
-34 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
5m+8\left(-5\right)=-60
5m+8n=-60 ನಲ್ಲಿ n ಗಾಗಿ -5 ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ m ಪರಿಹರಿಸಬಹುದು.
5m-40=-60
-5 ಅನ್ನು 8 ಬಾರಿ ಗುಣಿಸಿ.
5m=-20
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 40 ಸೇರಿಸಿ.
m=-4
5 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
m=-4,n=-5
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.