ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
a, b ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

3a+14b=4,13a+19b=13
ಪರ್ಯಾಯವನ್ನು ಬಳಸಿಕೊಂಡು ಸಮೀಕರಣಗಳ ಜೋಡಿಯನ್ನು ಪರಿಹರಿಸಲು, ಮೊದಲು ಚರಾಂಶಗಳ ಒಂದಕ್ಕೆ ಸಮೀಕರಣಗಳ ಒಂದನ್ನು ಪರಿಹರಿಸಿ. ತದನಂತರ ಇತರ ಸಮೀಕರಣದಲ್ಲಿ ಆ ಚರಾಂಶಕ್ಕೆ ಫಲಿತಾಂಶವನ್ನು ಬದಲಿಸಿ.
3a+14b=4
ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದನ್ನು ಆರಿಸಿ ಹಾಗೂ ಸಮ ಚಿಹ್ನೆಯ ಎಡಭಾಗದಲ್ಲಿ a ಪ್ರತ್ಯೇಕಿಸುವ ಮೂಲಕ a ಗಾಗಿ ಅದನ್ನು ಪರಿಹರಿಸಿ.
3a=-14b+4
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 14b ಕಳೆಯಿರಿ.
a=\frac{1}{3}\left(-14b+4\right)
3 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
a=-\frac{14}{3}b+\frac{4}{3}
-14b+4 ಅನ್ನು \frac{1}{3} ಬಾರಿ ಗುಣಿಸಿ.
13\left(-\frac{14}{3}b+\frac{4}{3}\right)+19b=13
ಇತರ ಸಮೀಕರಣ 13a+19b=13 ನಲ್ಲಿ a ಗಾಗಿ \frac{-14b+4}{3} ಬದಲಿಸಿ.
-\frac{182}{3}b+\frac{52}{3}+19b=13
\frac{-14b+4}{3} ಅನ್ನು 13 ಬಾರಿ ಗುಣಿಸಿ.
-\frac{125}{3}b+\frac{52}{3}=13
19b ಗೆ -\frac{182b}{3} ಸೇರಿಸಿ.
-\frac{125}{3}b=-\frac{13}{3}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{52}{3} ಕಳೆಯಿರಿ.
b=\frac{13}{125}
ಭಿನ್ನಾಂಕದ ವ್ಯುತ್ಕ್ರಮದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿದಾಗ ಯಾವುದು ಒಂದೇ ಬರುತ್ತದೆಯೋ, -\frac{125}{3} ದಿಂದ ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
a=-\frac{14}{3}\times \frac{13}{125}+\frac{4}{3}
a=-\frac{14}{3}b+\frac{4}{3} ನಲ್ಲಿ b ಗಾಗಿ \frac{13}{125} ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ a ಪರಿಹರಿಸಬಹುದು.
a=-\frac{182}{375}+\frac{4}{3}
ಸಂಖ್ಯಾಕಾರ ಸಮಯ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದ ಸಮಯ ಛೇದವನ್ನು ಗುಣಿಸುವ ಮೂಲಕ \frac{13}{125} ಅನ್ನು -\frac{14}{3} ಬಾರಿ ಗುಣಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
a=\frac{106}{125}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ -\frac{182}{375} ಗೆ \frac{4}{3} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
a=\frac{106}{125},b=\frac{13}{125}
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
3a+14b=4,13a+19b=13
ಸಮೀಕರಣಗಳನ್ನು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಿಸಿ ತದನಂತರ ಸಮೀಕರಣಗಳ ವ್ಯವಸ್ಥೆಯನ್ನು ಪರಿಹರಿಸಲು ಮ್ಯಾಟ್ರಿಸೈಸ್ ಬಳಸಿ.
\left(\begin{matrix}3&14\\13&19\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}4\\13\end{matrix}\right)
ಸಮೀಕರಣಗಳನ್ನು ಮಾತೃಕೆ ರೂಪದಲ್ಲಿ ಬರೆಯಿರಿ.
inverse(\left(\begin{matrix}3&14\\13&19\end{matrix}\right))\left(\begin{matrix}3&14\\13&19\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&14\\13&19\end{matrix}\right))\left(\begin{matrix}4\\13\end{matrix}\right)
\left(\begin{matrix}3&14\\13&19\end{matrix}\right) ನ ವಿಲೋಮ ಮಾತೃಕೆ ಮೂಲಕ ಸಮೀಕರಣವನ್ನು ಎಡಕ್ಕೆ ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&14\\13&19\end{matrix}\right))\left(\begin{matrix}4\\13\end{matrix}\right)
ಮಾತೃಕೆ ಮತ್ತು ಅದರ ವಿಲೋಮದ ವ್ಯುತ್ಪನ್ನವು ಗುರುತು ಮಾತೃಕೆ ಆಗಿದೆ.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&14\\13&19\end{matrix}\right))\left(\begin{matrix}4\\13\end{matrix}\right)
ಸಮಾನ ಚಿಹ್ನೆಯ ಎಡ ಬದಿಯಲ್ಲಿ ಮಾತೃಕೆಗಳನ್ನು ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{19}{3\times 19-14\times 13}&-\frac{14}{3\times 19-14\times 13}\\-\frac{13}{3\times 19-14\times 13}&\frac{3}{3\times 19-14\times 13}\end{matrix}\right)\left(\begin{matrix}4\\13\end{matrix}\right)
2\times 2 ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) ಗೆ; ವಿಲೋಮ ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ಆಗಿದೆ, ಆದ್ದರಿಂದ ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಸಮೀಕರಣವನ್ನು ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಗುಣಾಕಾರ ಸಮಸ್ಯೆಯೆಂದು ಮರುಬರೆಯಬಹುದು.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{19}{125}&\frac{14}{125}\\\frac{13}{125}&-\frac{3}{125}\end{matrix}\right)\left(\begin{matrix}4\\13\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{19}{125}\times 4+\frac{14}{125}\times 13\\\frac{13}{125}\times 4-\frac{3}{125}\times 13\end{matrix}\right)
ಮಾತೃಕೆಗಳನ್ನು ಗುಣಿಸಿ.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{106}{125}\\\frac{13}{125}\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
a=\frac{106}{125},b=\frac{13}{125}
ಮಾತೃಕೆ ಅಂಶಗಳು a ಮತ್ತು b ಬೇರೆ ಮಾಡಿ.
3a+14b=4,13a+19b=13
ತೆಗೆದುಹಾಕುವಿಕೆ ಮೂಲಕ ಪರಿಹರಿಸಲು, ಚರಾಂಶಗಳಲ್ಲಿನ ಗುಣಾಂಕಗಳು ಎರಡು ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದೇ ಆಗಿರಬೇಕು ಈ ಮೂಲಕ ಇತರೆಯಿಂದ ಒಂದು ಸಮೀಕರಣವನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ ಚರಾಂಶವನ್ನು ರದ್ದುಗೊಳಿಸಲಾಗುತ್ತದೆ.
13\times 3a+13\times 14b=13\times 4,3\times 13a+3\times 19b=3\times 13
3a ಮತ್ತು 13a ಸಮವಾಗಿ ಮಾಡಲು, ಮೊದಲ ಸಮೀಕರಣದ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು 13 ಎರಡನೇ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು 3 ರಿಂದ ಗುಣಿಸಿ.
39a+182b=52,39a+57b=39
ಸರಳೀಕೃತಗೊಳಿಸಿ.
39a-39a+182b-57b=52-39
ಸಮ ಚಿಹ್ನೆಯ ಪ್ರತಿ ಬದಿಯಲ್ಲಿ ಪದಗಳಂತಹವುಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ 39a+182b=52 ದಿಂದ 39a+57b=39 ಕಳೆಯಿರಿ.
182b-57b=52-39
-39a ಗೆ 39a ಸೇರಿಸಿ. ನಿಯಮಗಳು 39a ಮತ್ತು -39a ರದ್ದುಗೊಳಿಸಲಾಗಿದೆ, ಈ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದಾಗ ಏಕೈಕ ಚರಾಂಶದ ಜೊತೆಗೆ ಸಮೀಕರಣವನ್ನು ಉಳಿಸಿದೆ.
125b=52-39
-57b ಗೆ 182b ಸೇರಿಸಿ.
125b=13
-39 ಗೆ 52 ಸೇರಿಸಿ.
b=\frac{13}{125}
125 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
13a+19\times \frac{13}{125}=13
13a+19b=13 ನಲ್ಲಿ b ಗಾಗಿ \frac{13}{125} ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ a ಪರಿಹರಿಸಬಹುದು.
13a+\frac{247}{125}=13
\frac{13}{125} ಅನ್ನು 19 ಬಾರಿ ಗುಣಿಸಿ.
13a=\frac{1378}{125}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{247}{125} ಕಳೆಯಿರಿ.
a=\frac{106}{125}
13 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
a=\frac{106}{125},b=\frac{13}{125}
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.