\left\{ \begin{array} { l } { \sqrt { 3 } x - 3 y = \sqrt { 3 } } \\ { ( x - \sqrt { 3 } y = 1 ) } \end{array} \right.
x, y ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
x=\sqrt{3}y+1
y\in \mathrm{C}
x, y ಪರಿಹರಿಸಿ
x=\sqrt{3}y+1
y\in \mathrm{R}
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
-\sqrt{3}y+x=1
ಎರಡನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. ಪದಗಳನ್ನು ಮರುಕ್ರಮಗೊಳಿಸಿ.
\sqrt{3}x-3y=\sqrt{3},x+\left(-\sqrt{3}\right)y=1
ಪರ್ಯಾಯವನ್ನು ಬಳಸಿಕೊಂಡು ಸಮೀಕರಣಗಳ ಜೋಡಿಯನ್ನು ಪರಿಹರಿಸಲು, ಮೊದಲು ಚರಾಂಶಗಳ ಒಂದಕ್ಕೆ ಸಮೀಕರಣಗಳ ಒಂದನ್ನು ಪರಿಹರಿಸಿ. ತದನಂತರ ಇತರ ಸಮೀಕರಣದಲ್ಲಿ ಆ ಚರಾಂಶಕ್ಕೆ ಫಲಿತಾಂಶವನ್ನು ಬದಲಿಸಿ.
\sqrt{3}x-3y=\sqrt{3}
ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದನ್ನು ಆರಿಸಿ ಹಾಗೂ ಸಮ ಚಿಹ್ನೆಯ ಎಡಭಾಗದಲ್ಲಿ x ಪ್ರತ್ಯೇಕಿಸುವ ಮೂಲಕ x ಗಾಗಿ ಅದನ್ನು ಪರಿಹರಿಸಿ.
\sqrt{3}x=3y+\sqrt{3}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 3y ಸೇರಿಸಿ.
x=\frac{\sqrt{3}}{3}\left(3y+\sqrt{3}\right)
\sqrt{3} ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=\sqrt{3}y+1
3y+\sqrt{3} ಅನ್ನು \frac{\sqrt{3}}{3} ಬಾರಿ ಗುಣಿಸಿ.
\sqrt{3}y+1+\left(-\sqrt{3}\right)y=1
ಇತರ ಸಮೀಕರಣ x+\left(-\sqrt{3}\right)y=1 ನಲ್ಲಿ x ಗಾಗಿ \sqrt{3}y+1 ಬದಲಿಸಿ.
1=1
-\sqrt{3}y ಗೆ \sqrt{3}y ಸೇರಿಸಿ.
\text{true}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 1 ಕಳೆಯಿರಿ.
\text{false}
x=\sqrt{3}y+1 ನಲ್ಲಿ y ಗಾಗಿ \text{Indeterminate} ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ x ಪರಿಹರಿಸಬಹುದು.
x=\text{Indeterminate}
\text{Indeterminate} ಗೆ 1 ಸೇರಿಸಿ.
x=\text{Indeterminate},y=\text{Indeterminate}
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
-\sqrt{3}y+x=1
ಎರಡನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. ಪದಗಳನ್ನು ಮರುಕ್ರಮಗೊಳಿಸಿ.
\sqrt{3}x-3y=\sqrt{3},x+\left(-\sqrt{3}\right)y=1
ತೆಗೆದುಹಾಕುವಿಕೆ ಮೂಲಕ ಪರಿಹರಿಸಲು, ಚರಾಂಶಗಳಲ್ಲಿನ ಗುಣಾಂಕಗಳು ಎರಡು ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದೇ ಆಗಿರಬೇಕು ಈ ಮೂಲಕ ಇತರೆಯಿಂದ ಒಂದು ಸಮೀಕರಣವನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ ಚರಾಂಶವನ್ನು ರದ್ದುಗೊಳಿಸಲಾಗುತ್ತದೆ.
\sqrt{3}x-3y=\sqrt{3},\sqrt{3}x+\sqrt{3}\left(-\sqrt{3}\right)y=\sqrt{3}
\sqrt{3}x ಮತ್ತು x ಸಮವಾಗಿ ಮಾಡಲು, ಮೊದಲ ಸಮೀಕರಣದ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು 1 ಎರಡನೇ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು \sqrt{3} ರಿಂದ ಗುಣಿಸಿ.
\sqrt{3}x-3y=\sqrt{3},\sqrt{3}x-3y=\sqrt{3}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
\sqrt{3}x+\left(-\sqrt{3}\right)x-3y+3y=\sqrt{3}-\sqrt{3}
ಸಮ ಚಿಹ್ನೆಯ ಪ್ರತಿ ಬದಿಯಲ್ಲಿ ಪದಗಳಂತಹವುಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ \sqrt{3}x-3y=\sqrt{3} ದಿಂದ \sqrt{3}x-3y=\sqrt{3} ಕಳೆಯಿರಿ.
-3y+3y=\sqrt{3}-\sqrt{3}
-\sqrt{3}x ಗೆ \sqrt{3}x ಸೇರಿಸಿ. ನಿಯಮಗಳು \sqrt{3}x ಮತ್ತು -\sqrt{3}x ರದ್ದುಗೊಳಿಸಲಾಗಿದೆ, ಈ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದಾಗ ಏಕೈಕ ಚರಾಂಶದ ಜೊತೆಗೆ ಸಮೀಕರಣವನ್ನು ಉಳಿಸಿದೆ.
0=\sqrt{3}-\sqrt{3}
3y ಗೆ -3y ಸೇರಿಸಿ.
\text{true}
-\sqrt{3} ಗೆ \sqrt{3} ಸೇರಿಸಿ.
y=\text{Indeterminate}
0 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
\text{false}
x+\left(-\sqrt{3}\right)y=1 ನಲ್ಲಿ y ಗಾಗಿ \text{Indeterminate} ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ x ಪರಿಹರಿಸಬಹುದು.
x=\text{Indeterminate}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \text{Indeterminate} ಕಳೆಯಿರಿ.
x=\text{Indeterminate},y=\text{Indeterminate}
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
-\sqrt{3}y+x=1
ಎರಡನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. ಪದಗಳನ್ನು ಮರುಕ್ರಮಗೊಳಿಸಿ.
\sqrt{3}x-3y=\sqrt{3},x+\left(-\sqrt{3}\right)y=1
ಪರ್ಯಾಯವನ್ನು ಬಳಸಿಕೊಂಡು ಸಮೀಕರಣಗಳ ಜೋಡಿಯನ್ನು ಪರಿಹರಿಸಲು, ಮೊದಲು ಚರಾಂಶಗಳ ಒಂದಕ್ಕೆ ಸಮೀಕರಣಗಳ ಒಂದನ್ನು ಪರಿಹರಿಸಿ. ತದನಂತರ ಇತರ ಸಮೀಕರಣದಲ್ಲಿ ಆ ಚರಾಂಶಕ್ಕೆ ಫಲಿತಾಂಶವನ್ನು ಬದಲಿಸಿ.
\sqrt{3}x-3y=\sqrt{3}
ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದನ್ನು ಆರಿಸಿ ಹಾಗೂ ಸಮ ಚಿಹ್ನೆಯ ಎಡಭಾಗದಲ್ಲಿ x ಪ್ರತ್ಯೇಕಿಸುವ ಮೂಲಕ x ಗಾಗಿ ಅದನ್ನು ಪರಿಹರಿಸಿ.
\sqrt{3}x=3y+\sqrt{3}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 3y ಸೇರಿಸಿ.
x=\frac{\sqrt{3}}{3}\left(3y+\sqrt{3}\right)
\sqrt{3} ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=\sqrt{3}y+1
3y+\sqrt{3} ಅನ್ನು \frac{\sqrt{3}}{3} ಬಾರಿ ಗುಣಿಸಿ.
\sqrt{3}y+1+\left(-\sqrt{3}\right)y=1
ಇತರ ಸಮೀಕರಣ x+\left(-\sqrt{3}\right)y=1 ನಲ್ಲಿ x ಗಾಗಿ \sqrt{3}y+1 ಬದಲಿಸಿ.
1=1
-\sqrt{3}y ಗೆ \sqrt{3}y ಸೇರಿಸಿ.
\text{true}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 1 ಕಳೆಯಿರಿ.
x=\text{Indeterminate}
x=\sqrt{3}y+1 ನಲ್ಲಿ y ಗಾಗಿ \text{Indeterminate} ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ x ಪರಿಹರಿಸಬಹುದು.
x=\text{Indeterminate},y=\text{Indeterminate}
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
-\sqrt{3}y+x=1
ಎರಡನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. ಪದಗಳನ್ನು ಮರುಕ್ರಮಗೊಳಿಸಿ.
\sqrt{3}x-3y=\sqrt{3},x+\left(-\sqrt{3}\right)y=1
ತೆಗೆದುಹಾಕುವಿಕೆ ಮೂಲಕ ಪರಿಹರಿಸಲು, ಚರಾಂಶಗಳಲ್ಲಿನ ಗುಣಾಂಕಗಳು ಎರಡು ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದೇ ಆಗಿರಬೇಕು ಈ ಮೂಲಕ ಇತರೆಯಿಂದ ಒಂದು ಸಮೀಕರಣವನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ ಚರಾಂಶವನ್ನು ರದ್ದುಗೊಳಿಸಲಾಗುತ್ತದೆ.
\sqrt{3}x-3y=\sqrt{3},\sqrt{3}x+\sqrt{3}\left(-\sqrt{3}\right)y=\sqrt{3}
\sqrt{3}x ಮತ್ತು x ಸಮವಾಗಿ ಮಾಡಲು, ಮೊದಲ ಸಮೀಕರಣದ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು 1 ಎರಡನೇ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು \sqrt{3} ರಿಂದ ಗುಣಿಸಿ.
\sqrt{3}x-3y=\sqrt{3},\sqrt{3}x-3y=\sqrt{3}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
\sqrt{3}x+\left(-\sqrt{3}\right)x-3y+3y=\sqrt{3}-\sqrt{3}
ಸಮ ಚಿಹ್ನೆಯ ಪ್ರತಿ ಬದಿಯಲ್ಲಿ ಪದಗಳಂತಹವುಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ \sqrt{3}x-3y=\sqrt{3} ದಿಂದ \sqrt{3}x-3y=\sqrt{3} ಕಳೆಯಿರಿ.
-3y+3y=\sqrt{3}-\sqrt{3}
-\sqrt{3}x ಗೆ \sqrt{3}x ಸೇರಿಸಿ. ನಿಯಮಗಳು \sqrt{3}x ಮತ್ತು -\sqrt{3}x ರದ್ದುಗೊಳಿಸಲಾಗಿದೆ, ಈ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದಾಗ ಏಕೈಕ ಚರಾಂಶದ ಜೊತೆಗೆ ಸಮೀಕರಣವನ್ನು ಉಳಿಸಿದೆ.
0=\sqrt{3}-\sqrt{3}
3y ಗೆ -3y ಸೇರಿಸಿ.
\text{true}
-\sqrt{3} ಗೆ \sqrt{3} ಸೇರಿಸಿ.
y=\text{Indeterminate}
0 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
\text{Indeterminate}=1
x+\left(-\sqrt{3}\right)y=1 ನಲ್ಲಿ y ಗಾಗಿ \text{Indeterminate} ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ x ಪರಿಹರಿಸಬಹುದು.
x=\text{Indeterminate}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \text{Indeterminate} ಕಳೆಯಿರಿ.
x=\text{Indeterminate},y=\text{Indeterminate}
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}