ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x, y ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

2x+7y+3y=0
ಮೊದಲನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. 3 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
2x+10y=0
10y ಪಡೆದುಕೊಳ್ಳಲು 7y ಮತ್ತು 3y ಕೂಡಿಸಿ.
2x+5y-1=14+4x
ಎರಡನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. 2 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
2x+5y-1-4x=14
ಎರಡೂ ಕಡೆಗಳಿಂದ 4x ಕಳೆಯಿರಿ.
-2x+5y-1=14
-2x ಪಡೆದುಕೊಳ್ಳಲು 2x ಮತ್ತು -4x ಕೂಡಿಸಿ.
-2x+5y=14+1
ಎರಡೂ ಬದಿಗಳಿಗೆ 1 ಸೇರಿಸಿ.
-2x+5y=15
15 ಪಡೆದುಕೊಳ್ಳಲು 14 ಮತ್ತು 1 ಸೇರಿಸಿ.
2x+10y=0,-2x+5y=15
ಪರ್ಯಾಯವನ್ನು ಬಳಸಿಕೊಂಡು ಸಮೀಕರಣಗಳ ಜೋಡಿಯನ್ನು ಪರಿಹರಿಸಲು, ಮೊದಲು ಚರಾಂಶಗಳ ಒಂದಕ್ಕೆ ಸಮೀಕರಣಗಳ ಒಂದನ್ನು ಪರಿಹರಿಸಿ. ತದನಂತರ ಇತರ ಸಮೀಕರಣದಲ್ಲಿ ಆ ಚರಾಂಶಕ್ಕೆ ಫಲಿತಾಂಶವನ್ನು ಬದಲಿಸಿ.
2x+10y=0
ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದನ್ನು ಆರಿಸಿ ಹಾಗೂ ಸಮ ಚಿಹ್ನೆಯ ಎಡಭಾಗದಲ್ಲಿ x ಪ್ರತ್ಯೇಕಿಸುವ ಮೂಲಕ x ಗಾಗಿ ಅದನ್ನು ಪರಿಹರಿಸಿ.
2x=-10y
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 10y ಕಳೆಯಿರಿ.
x=\frac{1}{2}\left(-10\right)y
2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=-5y
-10y ಅನ್ನು \frac{1}{2} ಬಾರಿ ಗುಣಿಸಿ.
-2\left(-5\right)y+5y=15
ಇತರ ಸಮೀಕರಣ -2x+5y=15 ನಲ್ಲಿ x ಗಾಗಿ -5y ಬದಲಿಸಿ.
10y+5y=15
-5y ಅನ್ನು -2 ಬಾರಿ ಗುಣಿಸಿ.
15y=15
5y ಗೆ 10y ಸೇರಿಸಿ.
y=1
15 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=-5
x=-5y ನಲ್ಲಿ y ಗಾಗಿ 1 ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ x ಪರಿಹರಿಸಬಹುದು.
x=-5,y=1
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
2x+7y+3y=0
ಮೊದಲನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. 3 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
2x+10y=0
10y ಪಡೆದುಕೊಳ್ಳಲು 7y ಮತ್ತು 3y ಕೂಡಿಸಿ.
2x+5y-1=14+4x
ಎರಡನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. 2 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
2x+5y-1-4x=14
ಎರಡೂ ಕಡೆಗಳಿಂದ 4x ಕಳೆಯಿರಿ.
-2x+5y-1=14
-2x ಪಡೆದುಕೊಳ್ಳಲು 2x ಮತ್ತು -4x ಕೂಡಿಸಿ.
-2x+5y=14+1
ಎರಡೂ ಬದಿಗಳಿಗೆ 1 ಸೇರಿಸಿ.
-2x+5y=15
15 ಪಡೆದುಕೊಳ್ಳಲು 14 ಮತ್ತು 1 ಸೇರಿಸಿ.
2x+10y=0,-2x+5y=15
ಸಮೀಕರಣಗಳನ್ನು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಿಸಿ ತದನಂತರ ಸಮೀಕರಣಗಳ ವ್ಯವಸ್ಥೆಯನ್ನು ಪರಿಹರಿಸಲು ಮ್ಯಾಟ್ರಿಸೈಸ್ ಬಳಸಿ.
\left(\begin{matrix}2&10\\-2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\15\end{matrix}\right)
ಸಮೀಕರಣಗಳನ್ನು ಮಾತೃಕೆ ರೂಪದಲ್ಲಿ ಬರೆಯಿರಿ.
inverse(\left(\begin{matrix}2&10\\-2&5\end{matrix}\right))\left(\begin{matrix}2&10\\-2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&10\\-2&5\end{matrix}\right))\left(\begin{matrix}0\\15\end{matrix}\right)
\left(\begin{matrix}2&10\\-2&5\end{matrix}\right) ನ ವಿಲೋಮ ಮಾತೃಕೆ ಮೂಲಕ ಸಮೀಕರಣವನ್ನು ಎಡಕ್ಕೆ ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&10\\-2&5\end{matrix}\right))\left(\begin{matrix}0\\15\end{matrix}\right)
ಮಾತೃಕೆ ಮತ್ತು ಅದರ ವಿಲೋಮದ ವ್ಯುತ್ಪನ್ನವು ಗುರುತು ಮಾತೃಕೆ ಆಗಿದೆ.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&10\\-2&5\end{matrix}\right))\left(\begin{matrix}0\\15\end{matrix}\right)
ಸಮಾನ ಚಿಹ್ನೆಯ ಎಡ ಬದಿಯಲ್ಲಿ ಮಾತೃಕೆಗಳನ್ನು ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2\times 5-10\left(-2\right)}&-\frac{10}{2\times 5-10\left(-2\right)}\\-\frac{-2}{2\times 5-10\left(-2\right)}&\frac{2}{2\times 5-10\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}0\\15\end{matrix}\right)
2\times 2 ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) ಗೆ; ವಿಲೋಮ ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ಆಗಿದೆ, ಆದ್ದರಿಂದ ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಸಮೀಕರಣವನ್ನು ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಗುಣಾಕಾರ ಸಮಸ್ಯೆಯೆಂದು ಮರುಬರೆಯಬಹುದು.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&-\frac{1}{3}\\\frac{1}{15}&\frac{1}{15}\end{matrix}\right)\left(\begin{matrix}0\\15\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\times 15\\\frac{1}{15}\times 15\end{matrix}\right)
ಮಾತೃಕೆಗಳನ್ನು ಗುಣಿಸಿ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\1\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
x=-5,y=1
ಮಾತೃಕೆ ಅಂಶಗಳು x ಮತ್ತು y ಬೇರೆ ಮಾಡಿ.
2x+7y+3y=0
ಮೊದಲನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. 3 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
2x+10y=0
10y ಪಡೆದುಕೊಳ್ಳಲು 7y ಮತ್ತು 3y ಕೂಡಿಸಿ.
2x+5y-1=14+4x
ಎರಡನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. 2 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
2x+5y-1-4x=14
ಎರಡೂ ಕಡೆಗಳಿಂದ 4x ಕಳೆಯಿರಿ.
-2x+5y-1=14
-2x ಪಡೆದುಕೊಳ್ಳಲು 2x ಮತ್ತು -4x ಕೂಡಿಸಿ.
-2x+5y=14+1
ಎರಡೂ ಬದಿಗಳಿಗೆ 1 ಸೇರಿಸಿ.
-2x+5y=15
15 ಪಡೆದುಕೊಳ್ಳಲು 14 ಮತ್ತು 1 ಸೇರಿಸಿ.
2x+10y=0,-2x+5y=15
ತೆಗೆದುಹಾಕುವಿಕೆ ಮೂಲಕ ಪರಿಹರಿಸಲು, ಚರಾಂಶಗಳಲ್ಲಿನ ಗುಣಾಂಕಗಳು ಎರಡು ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದೇ ಆಗಿರಬೇಕು ಈ ಮೂಲಕ ಇತರೆಯಿಂದ ಒಂದು ಸಮೀಕರಣವನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ ಚರಾಂಶವನ್ನು ರದ್ದುಗೊಳಿಸಲಾಗುತ್ತದೆ.
-2\times 2x-2\times 10y=0,2\left(-2\right)x+2\times 5y=2\times 15
2x ಮತ್ತು -2x ಸಮವಾಗಿ ಮಾಡಲು, ಮೊದಲ ಸಮೀಕರಣದ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು -2 ಎರಡನೇ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು 2 ರಿಂದ ಗುಣಿಸಿ.
-4x-20y=0,-4x+10y=30
ಸರಳೀಕೃತಗೊಳಿಸಿ.
-4x+4x-20y-10y=-30
ಸಮ ಚಿಹ್ನೆಯ ಪ್ರತಿ ಬದಿಯಲ್ಲಿ ಪದಗಳಂತಹವುಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ -4x-20y=0 ದಿಂದ -4x+10y=30 ಕಳೆಯಿರಿ.
-20y-10y=-30
4x ಗೆ -4x ಸೇರಿಸಿ. ನಿಯಮಗಳು -4x ಮತ್ತು 4x ರದ್ದುಗೊಳಿಸಲಾಗಿದೆ, ಈ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದಾಗ ಏಕೈಕ ಚರಾಂಶದ ಜೊತೆಗೆ ಸಮೀಕರಣವನ್ನು ಉಳಿಸಿದೆ.
-30y=-30
-10y ಗೆ -20y ಸೇರಿಸಿ.
y=1
-30 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
-2x+5=15
-2x+5y=15 ನಲ್ಲಿ y ಗಾಗಿ 1 ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ x ಪರಿಹರಿಸಬಹುದು.
-2x=10
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 5 ಕಳೆಯಿರಿ.
x=-5
-2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=-5,y=1
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.