ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x, y ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

2x+7y+3y=0
ಮೊದಲನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. 3 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
2x+10y=0
10y ಪಡೆದುಕೊಳ್ಳಲು 7y ಮತ್ತು 3y ಕೂಡಿಸಿ.
2x+5y-1=4-2x
ಎರಡನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. 2 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
2x+5y-1+2x=4
ಎರಡೂ ಬದಿಗಳಿಗೆ 2x ಸೇರಿಸಿ.
4x+5y-1=4
4x ಪಡೆದುಕೊಳ್ಳಲು 2x ಮತ್ತು 2x ಕೂಡಿಸಿ.
4x+5y=4+1
ಎರಡೂ ಬದಿಗಳಿಗೆ 1 ಸೇರಿಸಿ.
4x+5y=5
5 ಪಡೆದುಕೊಳ್ಳಲು 4 ಮತ್ತು 1 ಸೇರಿಸಿ.
2x+10y=0,4x+5y=5
ಪರ್ಯಾಯವನ್ನು ಬಳಸಿಕೊಂಡು ಸಮೀಕರಣಗಳ ಜೋಡಿಯನ್ನು ಪರಿಹರಿಸಲು, ಮೊದಲು ಚರಾಂಶಗಳ ಒಂದಕ್ಕೆ ಸಮೀಕರಣಗಳ ಒಂದನ್ನು ಪರಿಹರಿಸಿ. ತದನಂತರ ಇತರ ಸಮೀಕರಣದಲ್ಲಿ ಆ ಚರಾಂಶಕ್ಕೆ ಫಲಿತಾಂಶವನ್ನು ಬದಲಿಸಿ.
2x+10y=0
ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದನ್ನು ಆರಿಸಿ ಹಾಗೂ ಸಮ ಚಿಹ್ನೆಯ ಎಡಭಾಗದಲ್ಲಿ x ಪ್ರತ್ಯೇಕಿಸುವ ಮೂಲಕ x ಗಾಗಿ ಅದನ್ನು ಪರಿಹರಿಸಿ.
2x=-10y
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 10y ಕಳೆಯಿರಿ.
x=\frac{1}{2}\left(-10\right)y
2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=-5y
-10y ಅನ್ನು \frac{1}{2} ಬಾರಿ ಗುಣಿಸಿ.
4\left(-5\right)y+5y=5
ಇತರ ಸಮೀಕರಣ 4x+5y=5 ನಲ್ಲಿ x ಗಾಗಿ -5y ಬದಲಿಸಿ.
-20y+5y=5
-5y ಅನ್ನು 4 ಬಾರಿ ಗುಣಿಸಿ.
-15y=5
5y ಗೆ -20y ಸೇರಿಸಿ.
y=-\frac{1}{3}
-15 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=-5\left(-\frac{1}{3}\right)
x=-5y ನಲ್ಲಿ y ಗಾಗಿ -\frac{1}{3} ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ x ಪರಿಹರಿಸಬಹುದು.
x=\frac{5}{3}
-\frac{1}{3} ಅನ್ನು -5 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{5}{3},y=-\frac{1}{3}
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
2x+7y+3y=0
ಮೊದಲನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. 3 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
2x+10y=0
10y ಪಡೆದುಕೊಳ್ಳಲು 7y ಮತ್ತು 3y ಕೂಡಿಸಿ.
2x+5y-1=4-2x
ಎರಡನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. 2 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
2x+5y-1+2x=4
ಎರಡೂ ಬದಿಗಳಿಗೆ 2x ಸೇರಿಸಿ.
4x+5y-1=4
4x ಪಡೆದುಕೊಳ್ಳಲು 2x ಮತ್ತು 2x ಕೂಡಿಸಿ.
4x+5y=4+1
ಎರಡೂ ಬದಿಗಳಿಗೆ 1 ಸೇರಿಸಿ.
4x+5y=5
5 ಪಡೆದುಕೊಳ್ಳಲು 4 ಮತ್ತು 1 ಸೇರಿಸಿ.
2x+10y=0,4x+5y=5
ಸಮೀಕರಣಗಳನ್ನು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಿಸಿ ತದನಂತರ ಸಮೀಕರಣಗಳ ವ್ಯವಸ್ಥೆಯನ್ನು ಪರಿಹರಿಸಲು ಮ್ಯಾಟ್ರಿಸೈಸ್ ಬಳಸಿ.
\left(\begin{matrix}2&10\\4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\5\end{matrix}\right)
ಸಮೀಕರಣಗಳನ್ನು ಮಾತೃಕೆ ರೂಪದಲ್ಲಿ ಬರೆಯಿರಿ.
inverse(\left(\begin{matrix}2&10\\4&5\end{matrix}\right))\left(\begin{matrix}2&10\\4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&10\\4&5\end{matrix}\right))\left(\begin{matrix}0\\5\end{matrix}\right)
\left(\begin{matrix}2&10\\4&5\end{matrix}\right) ನ ವಿಲೋಮ ಮಾತೃಕೆ ಮೂಲಕ ಸಮೀಕರಣವನ್ನು ಎಡಕ್ಕೆ ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&10\\4&5\end{matrix}\right))\left(\begin{matrix}0\\5\end{matrix}\right)
ಮಾತೃಕೆ ಮತ್ತು ಅದರ ವಿಲೋಮದ ವ್ಯುತ್ಪನ್ನವು ಗುರುತು ಮಾತೃಕೆ ಆಗಿದೆ.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&10\\4&5\end{matrix}\right))\left(\begin{matrix}0\\5\end{matrix}\right)
ಸಮಾನ ಚಿಹ್ನೆಯ ಎಡ ಬದಿಯಲ್ಲಿ ಮಾತೃಕೆಗಳನ್ನು ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2\times 5-10\times 4}&-\frac{10}{2\times 5-10\times 4}\\-\frac{4}{2\times 5-10\times 4}&\frac{2}{2\times 5-10\times 4}\end{matrix}\right)\left(\begin{matrix}0\\5\end{matrix}\right)
2\times 2 ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) ಗೆ; ವಿಲೋಮ ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ಆಗಿದೆ, ಆದ್ದರಿಂದ ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಸಮೀಕರಣವನ್ನು ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಗುಣಾಕಾರ ಸಮಸ್ಯೆಯೆಂದು ಮರುಬರೆಯಬಹುದು.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}&\frac{1}{3}\\\frac{2}{15}&-\frac{1}{15}\end{matrix}\right)\left(\begin{matrix}0\\5\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 5\\-\frac{1}{15}\times 5\end{matrix}\right)
ಮಾತೃಕೆಗಳನ್ನು ಗುಣಿಸಿ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3}\\-\frac{1}{3}\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
x=\frac{5}{3},y=-\frac{1}{3}
ಮಾತೃಕೆ ಅಂಶಗಳು x ಮತ್ತು y ಬೇರೆ ಮಾಡಿ.
2x+7y+3y=0
ಮೊದಲನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. 3 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
2x+10y=0
10y ಪಡೆದುಕೊಳ್ಳಲು 7y ಮತ್ತು 3y ಕೂಡಿಸಿ.
2x+5y-1=4-2x
ಎರಡನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. 2 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
2x+5y-1+2x=4
ಎರಡೂ ಬದಿಗಳಿಗೆ 2x ಸೇರಿಸಿ.
4x+5y-1=4
4x ಪಡೆದುಕೊಳ್ಳಲು 2x ಮತ್ತು 2x ಕೂಡಿಸಿ.
4x+5y=4+1
ಎರಡೂ ಬದಿಗಳಿಗೆ 1 ಸೇರಿಸಿ.
4x+5y=5
5 ಪಡೆದುಕೊಳ್ಳಲು 4 ಮತ್ತು 1 ಸೇರಿಸಿ.
2x+10y=0,4x+5y=5
ತೆಗೆದುಹಾಕುವಿಕೆ ಮೂಲಕ ಪರಿಹರಿಸಲು, ಚರಾಂಶಗಳಲ್ಲಿನ ಗುಣಾಂಕಗಳು ಎರಡು ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದೇ ಆಗಿರಬೇಕು ಈ ಮೂಲಕ ಇತರೆಯಿಂದ ಒಂದು ಸಮೀಕರಣವನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ ಚರಾಂಶವನ್ನು ರದ್ದುಗೊಳಿಸಲಾಗುತ್ತದೆ.
4\times 2x+4\times 10y=0,2\times 4x+2\times 5y=2\times 5
2x ಮತ್ತು 4x ಸಮವಾಗಿ ಮಾಡಲು, ಮೊದಲ ಸಮೀಕರಣದ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು 4 ಎರಡನೇ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು 2 ರಿಂದ ಗುಣಿಸಿ.
8x+40y=0,8x+10y=10
ಸರಳೀಕೃತಗೊಳಿಸಿ.
8x-8x+40y-10y=-10
ಸಮ ಚಿಹ್ನೆಯ ಪ್ರತಿ ಬದಿಯಲ್ಲಿ ಪದಗಳಂತಹವುಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ 8x+40y=0 ದಿಂದ 8x+10y=10 ಕಳೆಯಿರಿ.
40y-10y=-10
-8x ಗೆ 8x ಸೇರಿಸಿ. ನಿಯಮಗಳು 8x ಮತ್ತು -8x ರದ್ದುಗೊಳಿಸಲಾಗಿದೆ, ಈ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದಾಗ ಏಕೈಕ ಚರಾಂಶದ ಜೊತೆಗೆ ಸಮೀಕರಣವನ್ನು ಉಳಿಸಿದೆ.
30y=-10
-10y ಗೆ 40y ಸೇರಿಸಿ.
y=-\frac{1}{3}
30 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
4x+5\left(-\frac{1}{3}\right)=5
4x+5y=5 ನಲ್ಲಿ y ಗಾಗಿ -\frac{1}{3} ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ x ಪರಿಹರಿಸಬಹುದು.
4x-\frac{5}{3}=5
-\frac{1}{3} ಅನ್ನು 5 ಬಾರಿ ಗುಣಿಸಿ.
4x=\frac{20}{3}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{5}{3} ಸೇರಿಸಿ.
x=\frac{5}{3}
4 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=\frac{5}{3},y=-\frac{1}{3}
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.