\left\{ \begin{array} { l } { \frac { 1 } { 3 } x + \frac { 1 } { 2 } y = 1 } \\ { - \frac { 2 } { 3 } x + \frac { 1 } { 4 } y = 3 } \end{array} \right.
x, y ಪರಿಹರಿಸಿ
x=-3
y=4
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\frac{1}{3}x+\frac{1}{2}y=1,-\frac{2}{3}x+\frac{1}{4}y=3
ಪರ್ಯಾಯವನ್ನು ಬಳಸಿಕೊಂಡು ಸಮೀಕರಣಗಳ ಜೋಡಿಯನ್ನು ಪರಿಹರಿಸಲು, ಮೊದಲು ಚರಾಂಶಗಳ ಒಂದಕ್ಕೆ ಸಮೀಕರಣಗಳ ಒಂದನ್ನು ಪರಿಹರಿಸಿ. ತದನಂತರ ಇತರ ಸಮೀಕರಣದಲ್ಲಿ ಆ ಚರಾಂಶಕ್ಕೆ ಫಲಿತಾಂಶವನ್ನು ಬದಲಿಸಿ.
\frac{1}{3}x+\frac{1}{2}y=1
ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದನ್ನು ಆರಿಸಿ ಹಾಗೂ ಸಮ ಚಿಹ್ನೆಯ ಎಡಭಾಗದಲ್ಲಿ x ಪ್ರತ್ಯೇಕಿಸುವ ಮೂಲಕ x ಗಾಗಿ ಅದನ್ನು ಪರಿಹರಿಸಿ.
\frac{1}{3}x=-\frac{1}{2}y+1
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{y}{2} ಕಳೆಯಿರಿ.
x=3\left(-\frac{1}{2}y+1\right)
3 ಮೂಲಕ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
x=-\frac{3}{2}y+3
-\frac{y}{2}+1 ಅನ್ನು 3 ಬಾರಿ ಗುಣಿಸಿ.
-\frac{2}{3}\left(-\frac{3}{2}y+3\right)+\frac{1}{4}y=3
ಇತರ ಸಮೀಕರಣ -\frac{2}{3}x+\frac{1}{4}y=3 ನಲ್ಲಿ x ಗಾಗಿ -\frac{3y}{2}+3 ಬದಲಿಸಿ.
y-2+\frac{1}{4}y=3
-\frac{3y}{2}+3 ಅನ್ನು -\frac{2}{3} ಬಾರಿ ಗುಣಿಸಿ.
\frac{5}{4}y-2=3
\frac{y}{4} ಗೆ y ಸೇರಿಸಿ.
\frac{5}{4}y=5
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 2 ಸೇರಿಸಿ.
y=4
ಭಿನ್ನಾಂಕದ ವ್ಯುತ್ಕ್ರಮದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿದಾಗ ಯಾವುದು ಒಂದೇ ಬರುತ್ತದೆಯೋ, \frac{5}{4} ದಿಂದ ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=-\frac{3}{2}\times 4+3
x=-\frac{3}{2}y+3 ನಲ್ಲಿ y ಗಾಗಿ 4 ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ x ಪರಿಹರಿಸಬಹುದು.
x=-6+3
4 ಅನ್ನು -\frac{3}{2} ಬಾರಿ ಗುಣಿಸಿ.
x=-3
-6 ಗೆ 3 ಸೇರಿಸಿ.
x=-3,y=4
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
\frac{1}{3}x+\frac{1}{2}y=1,-\frac{2}{3}x+\frac{1}{4}y=3
ಸಮೀಕರಣಗಳನ್ನು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಿಸಿ ತದನಂತರ ಸಮೀಕರಣಗಳ ವ್ಯವಸ್ಥೆಯನ್ನು ಪರಿಹರಿಸಲು ಮ್ಯಾಟ್ರಿಸೈಸ್ ಬಳಸಿ.
\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\-\frac{2}{3}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\3\end{matrix}\right)
ಸಮೀಕರಣಗಳನ್ನು ಮಾತೃಕೆ ರೂಪದಲ್ಲಿ ಬರೆಯಿರಿ.
inverse(\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\-\frac{2}{3}&\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\-\frac{2}{3}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\-\frac{2}{3}&\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}1\\3\end{matrix}\right)
\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\-\frac{2}{3}&\frac{1}{4}\end{matrix}\right) ನ ವಿಲೋಮ ಮಾತೃಕೆ ಮೂಲಕ ಸಮೀಕರಣವನ್ನು ಎಡಕ್ಕೆ ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\-\frac{2}{3}&\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}1\\3\end{matrix}\right)
ಮಾತೃಕೆ ಮತ್ತು ಅದರ ವಿಲೋಮದ ವ್ಯುತ್ಪನ್ನವು ಗುರುತು ಮಾತೃಕೆ ಆಗಿದೆ.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\-\frac{2}{3}&\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}1\\3\end{matrix}\right)
ಸಮಾನ ಚಿಹ್ನೆಯ ಎಡ ಬದಿಯಲ್ಲಿ ಮಾತೃಕೆಗಳನ್ನು ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{4}}{\frac{1}{3}\times \frac{1}{4}-\frac{1}{2}\left(-\frac{2}{3}\right)}&-\frac{\frac{1}{2}}{\frac{1}{3}\times \frac{1}{4}-\frac{1}{2}\left(-\frac{2}{3}\right)}\\-\frac{-\frac{2}{3}}{\frac{1}{3}\times \frac{1}{4}-\frac{1}{2}\left(-\frac{2}{3}\right)}&\frac{\frac{1}{3}}{\frac{1}{3}\times \frac{1}{4}-\frac{1}{2}\left(-\frac{2}{3}\right)}\end{matrix}\right)\left(\begin{matrix}1\\3\end{matrix}\right)
2\times 2 ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) ಗೆ; ವಿಲೋಮ ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ಆಗಿದೆ, ಆದ್ದರಿಂದ ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಸಮೀಕರಣವನ್ನು ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಗುಣಾಕಾರ ಸಮಸ್ಯೆಯೆಂದು ಮರುಬರೆಯಬಹುದು.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}&-\frac{6}{5}\\\frac{8}{5}&\frac{4}{5}\end{matrix}\right)\left(\begin{matrix}1\\3\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}-\frac{6}{5}\times 3\\\frac{8}{5}+\frac{4}{5}\times 3\end{matrix}\right)
ಮಾತೃಕೆಗಳನ್ನು ಗುಣಿಸಿ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\4\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
x=-3,y=4
ಮಾತೃಕೆ ಅಂಶಗಳು x ಮತ್ತು y ಬೇರೆ ಮಾಡಿ.
\frac{1}{3}x+\frac{1}{2}y=1,-\frac{2}{3}x+\frac{1}{4}y=3
ತೆಗೆದುಹಾಕುವಿಕೆ ಮೂಲಕ ಪರಿಹರಿಸಲು, ಚರಾಂಶಗಳಲ್ಲಿನ ಗುಣಾಂಕಗಳು ಎರಡು ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದೇ ಆಗಿರಬೇಕು ಈ ಮೂಲಕ ಇತರೆಯಿಂದ ಒಂದು ಸಮೀಕರಣವನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ ಚರಾಂಶವನ್ನು ರದ್ದುಗೊಳಿಸಲಾಗುತ್ತದೆ.
-\frac{2}{3}\times \frac{1}{3}x-\frac{2}{3}\times \frac{1}{2}y=-\frac{2}{3},\frac{1}{3}\left(-\frac{2}{3}\right)x+\frac{1}{3}\times \frac{1}{4}y=\frac{1}{3}\times 3
\frac{x}{3} ಮತ್ತು -\frac{2x}{3} ಸಮವಾಗಿ ಮಾಡಲು, ಮೊದಲ ಸಮೀಕರಣದ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು -\frac{2}{3} ಎರಡನೇ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು \frac{1}{3} ರಿಂದ ಗುಣಿಸಿ.
-\frac{2}{9}x-\frac{1}{3}y=-\frac{2}{3},-\frac{2}{9}x+\frac{1}{12}y=1
ಸರಳೀಕೃತಗೊಳಿಸಿ.
-\frac{2}{9}x+\frac{2}{9}x-\frac{1}{3}y-\frac{1}{12}y=-\frac{2}{3}-1
ಸಮ ಚಿಹ್ನೆಯ ಪ್ರತಿ ಬದಿಯಲ್ಲಿ ಪದಗಳಂತಹವುಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ -\frac{2}{9}x-\frac{1}{3}y=-\frac{2}{3} ದಿಂದ -\frac{2}{9}x+\frac{1}{12}y=1 ಕಳೆಯಿರಿ.
-\frac{1}{3}y-\frac{1}{12}y=-\frac{2}{3}-1
\frac{2x}{9} ಗೆ -\frac{2x}{9} ಸೇರಿಸಿ. ನಿಯಮಗಳು -\frac{2x}{9} ಮತ್ತು \frac{2x}{9} ರದ್ದುಗೊಳಿಸಲಾಗಿದೆ, ಈ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದಾಗ ಏಕೈಕ ಚರಾಂಶದ ಜೊತೆಗೆ ಸಮೀಕರಣವನ್ನು ಉಳಿಸಿದೆ.
-\frac{5}{12}y=-\frac{2}{3}-1
-\frac{y}{12} ಗೆ -\frac{y}{3} ಸೇರಿಸಿ.
-\frac{5}{12}y=-\frac{5}{3}
-1 ಗೆ -\frac{2}{3} ಸೇರಿಸಿ.
y=4
ಭಿನ್ನಾಂಕದ ವ್ಯುತ್ಕ್ರಮದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿದಾಗ ಯಾವುದು ಒಂದೇ ಬರುತ್ತದೆಯೋ, -\frac{5}{12} ದಿಂದ ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
-\frac{2}{3}x+\frac{1}{4}\times 4=3
-\frac{2}{3}x+\frac{1}{4}y=3 ನಲ್ಲಿ y ಗಾಗಿ 4 ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ x ಪರಿಹರಿಸಬಹುದು.
-\frac{2}{3}x+1=3
4 ಅನ್ನು \frac{1}{4} ಬಾರಿ ಗುಣಿಸಿ.
-\frac{2}{3}x=2
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 1 ಕಳೆಯಿರಿ.
x=-3
ಭಿನ್ನಾಂಕದ ವ್ಯುತ್ಕ್ರಮದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿದಾಗ ಯಾವುದು ಒಂದೇ ಬರುತ್ತದೆಯೋ, -\frac{2}{3} ದಿಂದ ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=-3,y=4
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}