ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image
ವ್ಯತ್ಯಾಸ w.r.t. x
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\int x^{4}\mathrm{d}x+\int 2x^{3}\mathrm{d}x+\int -9x^{2}\mathrm{d}x+\int x\mathrm{d}x
ಪದದ ಮೂಲಕ ಮೊತ್ತ ಪದವನ್ನು ಸಂಯೋಜಿಸಿ.
\int x^{4}\mathrm{d}x+2\int x^{3}\mathrm{d}x-9\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
ಪ್ರತಿ ಪದಗಳಲ್ಲಿ ಸ್ಧಿರತೆಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\frac{x^{5}}{5}+2\int x^{3}\mathrm{d}x-9\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
k\neq -1 ಕ್ಕಾಗಿ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ಇರುವುದರಿಂದ, \int x^{4}\mathrm{d}x ಅನ್ನು \frac{x^{5}}{5} ನೊಂದಿಗೆ ಬದಲಾಯಿಸಿ.
\frac{x^{5}}{5}+\frac{x^{4}}{2}-9\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
k\neq -1 ಕ್ಕಾಗಿ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ಇರುವುದರಿಂದ, \int x^{3}\mathrm{d}x ಅನ್ನು \frac{x^{4}}{4} ನೊಂದಿಗೆ ಬದಲಾಯಿಸಿ. \frac{x^{4}}{4} ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
\frac{x^{5}}{5}+\frac{x^{4}}{2}-3x^{3}+\int x\mathrm{d}x
k\neq -1 ಕ್ಕಾಗಿ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ಇರುವುದರಿಂದ, \int x^{2}\mathrm{d}x ಅನ್ನು \frac{x^{3}}{3} ನೊಂದಿಗೆ ಬದಲಾಯಿಸಿ. \frac{x^{3}}{3} ಅನ್ನು -9 ಬಾರಿ ಗುಣಿಸಿ.
\frac{x^{5}}{5}+\frac{x^{4}}{2}-3x^{3}+\frac{x^{2}}{2}
k\neq -1 ಕ್ಕಾಗಿ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ಇರುವುದರಿಂದ, \int x\mathrm{d}x ಅನ್ನು \frac{x^{2}}{2} ನೊಂದಿಗೆ ಬದಲಾಯಿಸಿ.
\frac{x^{5}}{5}+\frac{x^{4}}{2}-3x^{3}+\frac{x^{2}}{2}+С
ಒಂದು ವೇಳೆ F\left(x\right) ಎನ್ನುವುದು f\left(x\right) ರ ಪ್ರತ್ಯುತ್ಪನ್ನವಾಗಿದ್ದರೆ, f\left(x\right) ರ ಪ್ರತ್ಯುತ್ಪನ್ನಗಳ ಎಲ್ಲಾ ಸಮೂಹವನ್ನು F\left(x\right)+C ನೀಡುತ್ತದೆ. ಆದ್ದರಿಂದ, ಫಲಿತಾಂಶಕ್ಕೆ C\in \mathrm{R} ಏಕೀಕರಣದ ಸ್ಥಿರತೆಯನ್ನು ಸೇರಿಸಿ.