ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image
ವ್ಯತ್ಯಾಸ w.r.t. x
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\int x^{2}\left(4\left(x^{3}\right)^{2}+16x^{3}+16\right)\mathrm{d}x
\left(2x^{3}+4\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
\int x^{2}\left(4x^{6}+16x^{3}+16\right)\mathrm{d}x
ಸಂಖ್ಯೆಯ ಘಾತವನ್ನು ಮತ್ತೊಂದು ಘಾತಕ್ಕೆ ಹೆಚ್ಚಿಸಲು, ಘಾತಾಂಕಗಳನ್ನು ಗುಣಿಸಿ. 6 ಪಡೆಯಲು 3 ಮತ್ತು 2 ಗುಣಿಸಿ.
\int 4x^{8}+16x^{5}+16x^{2}\mathrm{d}x
4x^{6}+16x^{3}+16 ದಿಂದ x^{2} ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
\int 4x^{8}\mathrm{d}x+\int 16x^{5}\mathrm{d}x+\int 16x^{2}\mathrm{d}x
ಪದದ ಮೂಲಕ ಮೊತ್ತ ಪದವನ್ನು ಸಂಯೋಜಿಸಿ.
4\int x^{8}\mathrm{d}x+16\int x^{5}\mathrm{d}x+16\int x^{2}\mathrm{d}x
ಪ್ರತಿ ಪದಗಳಲ್ಲಿ ಸ್ಧಿರತೆಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\frac{4x^{9}}{9}+16\int x^{5}\mathrm{d}x+16\int x^{2}\mathrm{d}x
k\neq -1 ಕ್ಕಾಗಿ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ಇರುವುದರಿಂದ, \int x^{8}\mathrm{d}x ಅನ್ನು \frac{x^{9}}{9} ನೊಂದಿಗೆ ಬದಲಾಯಿಸಿ. \frac{x^{9}}{9} ಅನ್ನು 4 ಬಾರಿ ಗುಣಿಸಿ.
\frac{4x^{9}}{9}+\frac{8x^{6}}{3}+16\int x^{2}\mathrm{d}x
k\neq -1 ಕ್ಕಾಗಿ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ಇರುವುದರಿಂದ, \int x^{5}\mathrm{d}x ಅನ್ನು \frac{x^{6}}{6} ನೊಂದಿಗೆ ಬದಲಾಯಿಸಿ. \frac{x^{6}}{6} ಅನ್ನು 16 ಬಾರಿ ಗುಣಿಸಿ.
\frac{4x^{9}}{9}+\frac{8x^{6}}{3}+\frac{16x^{3}}{3}
k\neq -1 ಕ್ಕಾಗಿ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ಇರುವುದರಿಂದ, \int x^{2}\mathrm{d}x ಅನ್ನು \frac{x^{3}}{3} ನೊಂದಿಗೆ ಬದಲಾಯಿಸಿ. \frac{x^{3}}{3} ಅನ್ನು 16 ಬಾರಿ ಗುಣಿಸಿ.
\frac{16x^{3}}{3}+\frac{8x^{6}}{3}+\frac{4x^{9}}{9}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
\frac{16x^{3}}{3}+\frac{8x^{6}}{3}+\frac{4x^{9}}{9}+С
ಒಂದು ವೇಳೆ F\left(x\right) ಎನ್ನುವುದು f\left(x\right) ರ ಪ್ರತ್ಯುತ್ಪನ್ನವಾಗಿದ್ದರೆ, f\left(x\right) ರ ಪ್ರತ್ಯುತ್ಪನ್ನಗಳ ಎಲ್ಲಾ ಸಮೂಹವನ್ನು F\left(x\right)+C ನೀಡುತ್ತದೆ. ಆದ್ದರಿಂದ, ಫಲಿತಾಂಶಕ್ಕೆ C\in \mathrm{R} ಏಕೀಕರಣದ ಸ್ಥಿರತೆಯನ್ನು ಸೇರಿಸಿ.