ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\int 15t^{3}-135t^{2}+225t\mathrm{d}t
ಮೊದಲು ಅನಿರ್ದಿಷ್ಟ ಅವಿಭಾಜ್ಯವನ್ನು ಮೌಲ್ಯಮಾಪನ ಮಾಡಿ.
\int 15t^{3}\mathrm{d}t+\int -135t^{2}\mathrm{d}t+\int 225t\mathrm{d}t
ಪದದ ಮೂಲಕ ಮೊತ್ತ ಪದವನ್ನು ಸಂಯೋಜಿಸಿ.
15\int t^{3}\mathrm{d}t-135\int t^{2}\mathrm{d}t+225\int t\mathrm{d}t
ಪ್ರತಿ ಪದಗಳಲ್ಲಿ ಸ್ಧಿರತೆಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\frac{15t^{4}}{4}-135\int t^{2}\mathrm{d}t+225\int t\mathrm{d}t
k\neq -1 ಕ್ಕಾಗಿ \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} ಇರುವುದರಿಂದ, \int t^{3}\mathrm{d}t ಅನ್ನು \frac{t^{4}}{4} ನೊಂದಿಗೆ ಬದಲಾಯಿಸಿ. \frac{t^{4}}{4} ಅನ್ನು 15 ಬಾರಿ ಗುಣಿಸಿ.
\frac{15t^{4}}{4}-45t^{3}+225\int t\mathrm{d}t
k\neq -1 ಕ್ಕಾಗಿ \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} ಇರುವುದರಿಂದ, \int t^{2}\mathrm{d}t ಅನ್ನು \frac{t^{3}}{3} ನೊಂದಿಗೆ ಬದಲಾಯಿಸಿ. \frac{t^{3}}{3} ಅನ್ನು -135 ಬಾರಿ ಗುಣಿಸಿ.
\frac{15t^{4}}{4}-45t^{3}+\frac{225t^{2}}{2}
k\neq -1 ಕ್ಕಾಗಿ \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} ಇರುವುದರಿಂದ, \int t\mathrm{d}t ಅನ್ನು \frac{t^{2}}{2} ನೊಂದಿಗೆ ಬದಲಾಯಿಸಿ. \frac{t^{2}}{2} ಅನ್ನು 225 ಬಾರಿ ಗುಣಿಸಿ.
\frac{15}{4}\times 5^{4}-45\times 5^{3}+\frac{225}{2}\times 5^{2}-\left(\frac{15}{4}\times 1^{4}-45\times 1^{3}+\frac{225}{2}\times 1^{2}\right)
ನಿರ್ದಿಷ್ಟ ಅವಿಭಾಜ್ಯ ಎನ್ನುವುದು ಸಂಯೋಜನೆಯ ಮೇಲಿನ ಮಿತಿಯಲ್ಲಿ ಮೌಲ್ಯಮಾಪನ ಮಾಡಲಾದ ಪ್ರತ್ಯುತ್ಪನ್ನದ ಅಭಿವ್ಯಕ್ತಿ ಮೈನಸ್ ಸಂಯೋಜನೆಯ ಕೆಳಗಿನ ಮಿತಿಯಲ್ಲಿ ಮೌಲ್ಯಮಾಪನ ಮಾಡಲಾದ ಪ್ರತ್ಯುತ್ಪನ್ನದ ಅಭಿವ್ಯಕ್ತಿಯಾಗಿದೆ.
-540
ಸರಳೀಕೃತಗೊಳಿಸಿ.