ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\int \frac{x^{4}}{4}-x^{3}-3x^{2}+8x\mathrm{d}x
ಮೊದಲು ಅನಿರ್ದಿಷ್ಟ ಅವಿಭಾಜ್ಯವನ್ನು ಮೌಲ್ಯಮಾಪನ ಮಾಡಿ.
\int \frac{x^{4}}{4}\mathrm{d}x+\int -x^{3}\mathrm{d}x+\int -3x^{2}\mathrm{d}x+\int 8x\mathrm{d}x
ಪದದ ಮೂಲಕ ಮೊತ್ತ ಪದವನ್ನು ಸಂಯೋಜಿಸಿ.
\frac{\int x^{4}\mathrm{d}x}{4}-\int x^{3}\mathrm{d}x-3\int x^{2}\mathrm{d}x+8\int x\mathrm{d}x
ಪ್ರತಿ ಪದಗಳಲ್ಲಿ ಸ್ಧಿರತೆಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\frac{x^{5}}{20}-\int x^{3}\mathrm{d}x-3\int x^{2}\mathrm{d}x+8\int x\mathrm{d}x
k\neq -1 ಕ್ಕಾಗಿ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ಇರುವುದರಿಂದ, \int x^{4}\mathrm{d}x ಅನ್ನು \frac{x^{5}}{5} ನೊಂದಿಗೆ ಬದಲಾಯಿಸಿ. \frac{x^{5}}{5} ಅನ್ನು \frac{1}{4} ಬಾರಿ ಗುಣಿಸಿ.
\frac{x^{5}}{20}-\frac{x^{4}}{4}-3\int x^{2}\mathrm{d}x+8\int x\mathrm{d}x
k\neq -1 ಕ್ಕಾಗಿ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ಇರುವುದರಿಂದ, \int x^{3}\mathrm{d}x ಅನ್ನು \frac{x^{4}}{4} ನೊಂದಿಗೆ ಬದಲಾಯಿಸಿ. \frac{x^{4}}{4} ಅನ್ನು -1 ಬಾರಿ ಗುಣಿಸಿ.
\frac{x^{5}}{20}-\frac{x^{4}}{4}-x^{3}+8\int x\mathrm{d}x
k\neq -1 ಕ್ಕಾಗಿ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ಇರುವುದರಿಂದ, \int x^{2}\mathrm{d}x ಅನ್ನು \frac{x^{3}}{3} ನೊಂದಿಗೆ ಬದಲಾಯಿಸಿ. \frac{x^{3}}{3} ಅನ್ನು -3 ಬಾರಿ ಗುಣಿಸಿ.
\frac{x^{5}}{20}-\frac{x^{4}}{4}-x^{3}+4x^{2}
k\neq -1 ಕ್ಕಾಗಿ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ಇರುವುದರಿಂದ, \int x\mathrm{d}x ಅನ್ನು \frac{x^{2}}{2} ನೊಂದಿಗೆ ಬದಲಾಯಿಸಿ. \frac{x^{2}}{2} ಅನ್ನು 8 ಬಾರಿ ಗುಣಿಸಿ.
\frac{4^{5}}{20}-\frac{4^{4}}{4}-4^{3}+4\times 4^{2}-\left(\frac{1^{5}}{20}-\frac{1^{4}}{4}-1^{3}+4\times 1^{2}\right)
ನಿರ್ದಿಷ್ಟ ಅವಿಭಾಜ್ಯ ಎನ್ನುವುದು ಸಂಯೋಜನೆಯ ಮೇಲಿನ ಮಿತಿಯಲ್ಲಿ ಮೌಲ್ಯಮಾಪನ ಮಾಡಲಾದ ಪ್ರತ್ಯುತ್ಪನ್ನದ ಅಭಿವ್ಯಕ್ತಿ ಮೈನಸ್ ಸಂಯೋಜನೆಯ ಕೆಳಗಿನ ಮಿತಿಯಲ್ಲಿ ಮೌಲ್ಯಮಾಪನ ಮಾಡಲಾದ ಪ್ರತ್ಯುತ್ಪನ್ನದ ಅಭಿವ್ಯಕ್ತಿಯಾಗಿದೆ.
-\frac{78}{5}
ಸರಳೀಕೃತಗೊಳಿಸಿ.