ಮೌಲ್ಯಮಾಪನ
\frac{34}{3}\approx 11.333333333
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\int x^{2}+\frac{1}{x^{2}}+1\mathrm{d}x
ಮೊದಲು ಅನಿರ್ದಿಷ್ಟ ಅವಿಭಾಜ್ಯವನ್ನು ಮೌಲ್ಯಮಾಪನ ಮಾಡಿ.
\int x^{2}\mathrm{d}x+\int \frac{1}{x^{2}}\mathrm{d}x+\int 1\mathrm{d}x
ಪದದ ಮೂಲಕ ಮೊತ್ತ ಪದವನ್ನು ಸಂಯೋಜಿಸಿ.
\frac{x^{3}}{3}+\int \frac{1}{x^{2}}\mathrm{d}x+\int 1\mathrm{d}x
k\neq -1 ಕ್ಕಾಗಿ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ಇರುವುದರಿಂದ, \int x^{2}\mathrm{d}x ಅನ್ನು \frac{x^{3}}{3} ನೊಂದಿಗೆ ಬದಲಾಯಿಸಿ.
\frac{x^{3}}{3}-\frac{1}{x}+\int 1\mathrm{d}x
k\neq -1 ಕ್ಕಾಗಿ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ಇರುವುದರಿಂದ, \int \frac{1}{x^{2}}\mathrm{d}x ಅನ್ನು -\frac{1}{x} ನೊಂದಿಗೆ ಬದಲಾಯಿಸಿ.
\frac{x^{3}}{3}-\frac{1}{x}+x
ಸಾಮಾನ್ಯ ಅವಿಭಾಜ್ಯಗಳ ನಿಯಮ \int a\mathrm{d}x=ax ಕೋಷ್ಟಕ ಬಳಸಿ 1 ಅವಿಭಾಜ್ಯವನ್ನು ಹುಡುಕಿ.
\frac{3^{3}}{3}-3^{-1}+3-\left(\frac{1^{3}}{3}-1^{-1}+1\right)
ನಿರ್ದಿಷ್ಟ ಅವಿಭಾಜ್ಯ ಎನ್ನುವುದು ಸಂಯೋಜನೆಯ ಮೇಲಿನ ಮಿತಿಯಲ್ಲಿ ಮೌಲ್ಯಮಾಪನ ಮಾಡಲಾದ ಪ್ರತ್ಯುತ್ಪನ್ನದ ಅಭಿವ್ಯಕ್ತಿ ಮೈನಸ್ ಸಂಯೋಜನೆಯ ಕೆಳಗಿನ ಮಿತಿಯಲ್ಲಿ ಮೌಲ್ಯಮಾಪನ ಮಾಡಲಾದ ಪ್ರತ್ಯುತ್ಪನ್ನದ ಅಭಿವ್ಯಕ್ತಿಯಾಗಿದೆ.
\frac{34}{3}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}