ಮೌಲ್ಯಮಾಪನ
-\frac{4}{3}\approx -1.333333333
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\int _{-1}^{1}t\left(1-2t+t^{2}\right)\mathrm{d}t
\left(1-t\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
\int _{-1}^{1}t-2t^{2}+t^{3}\mathrm{d}t
1-2t+t^{2} ದಿಂದ t ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
\int t-2t^{2}+t^{3}\mathrm{d}t
ಮೊದಲು ಅನಿರ್ದಿಷ್ಟ ಅವಿಭಾಜ್ಯವನ್ನು ಮೌಲ್ಯಮಾಪನ ಮಾಡಿ.
\int t\mathrm{d}t+\int -2t^{2}\mathrm{d}t+\int t^{3}\mathrm{d}t
ಪದದ ಮೂಲಕ ಮೊತ್ತ ಪದವನ್ನು ಸಂಯೋಜಿಸಿ.
\int t\mathrm{d}t-2\int t^{2}\mathrm{d}t+\int t^{3}\mathrm{d}t
ಪ್ರತಿ ಪದಗಳಲ್ಲಿ ಸ್ಧಿರತೆಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\frac{t^{2}}{2}-2\int t^{2}\mathrm{d}t+\int t^{3}\mathrm{d}t
k\neq -1 ಕ್ಕಾಗಿ \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} ಇರುವುದರಿಂದ, \int t\mathrm{d}t ಅನ್ನು \frac{t^{2}}{2} ನೊಂದಿಗೆ ಬದಲಾಯಿಸಿ.
\frac{t^{2}}{2}-\frac{2t^{3}}{3}+\int t^{3}\mathrm{d}t
k\neq -1 ಕ್ಕಾಗಿ \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} ಇರುವುದರಿಂದ, \int t^{2}\mathrm{d}t ಅನ್ನು \frac{t^{3}}{3} ನೊಂದಿಗೆ ಬದಲಾಯಿಸಿ. \frac{t^{3}}{3} ಅನ್ನು -2 ಬಾರಿ ಗುಣಿಸಿ.
\frac{t^{2}}{2}-\frac{2t^{3}}{3}+\frac{t^{4}}{4}
k\neq -1 ಕ್ಕಾಗಿ \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} ಇರುವುದರಿಂದ, \int t^{3}\mathrm{d}t ಅನ್ನು \frac{t^{4}}{4} ನೊಂದಿಗೆ ಬದಲಾಯಿಸಿ.
\frac{t^{4}}{4}-\frac{2t^{3}}{3}+\frac{t^{2}}{2}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
\frac{1^{4}}{4}-\frac{2}{3}\times 1^{3}+\frac{1^{2}}{2}-\left(\frac{\left(-1\right)^{4}}{4}-\frac{2}{3}\left(-1\right)^{3}+\frac{\left(-1\right)^{2}}{2}\right)
ನಿರ್ದಿಷ್ಟ ಅವಿಭಾಜ್ಯ ಎನ್ನುವುದು ಸಂಯೋಜನೆಯ ಮೇಲಿನ ಮಿತಿಯಲ್ಲಿ ಮೌಲ್ಯಮಾಪನ ಮಾಡಲಾದ ಪ್ರತ್ಯುತ್ಪನ್ನದ ಅಭಿವ್ಯಕ್ತಿ ಮೈನಸ್ ಸಂಯೋಜನೆಯ ಕೆಳಗಿನ ಮಿತಿಯಲ್ಲಿ ಮೌಲ್ಯಮಾಪನ ಮಾಡಲಾದ ಪ್ರತ್ಯುತ್ಪನ್ನದ ಅಭಿವ್ಯಕ್ತಿಯಾಗಿದೆ.
-\frac{4}{3}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}