ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image
ವ್ಯತ್ಯಾಸ w.r.t. x
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\int \frac{1}{100}\left(3-7x\right)^{2}\left(91+292x\right)^{2}\mathrm{d}x
-2 ನ ಘಾತಕ್ಕೆ 10 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು \frac{1}{100} ಪಡೆಯಿರಿ.
\int \frac{1}{100}\left(9-42x+49x^{2}\right)\left(91+292x\right)^{2}\mathrm{d}x
\left(3-7x\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
\int \frac{1}{100}\left(9-42x+49x^{2}\right)\left(8281+53144x+85264x^{2}\right)\mathrm{d}x
\left(91+292x\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
\int \left(\frac{9}{100}-\frac{21}{50}x+\frac{49}{100}x^{2}\right)\left(8281+53144x+85264x^{2}\right)\mathrm{d}x
9-42x+49x^{2} ದಿಂದ \frac{1}{100} ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
\int \frac{74529}{100}+\frac{65247}{50}x-\frac{1058903}{100}x^{2}-\frac{244258}{25}x^{3}+\frac{1044484}{25}x^{4}\mathrm{d}x
8281+53144x+85264x^{2} ರಿಂದು \frac{9}{100}-\frac{21}{50}x+\frac{49}{100}x^{2} ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
\int \frac{74529}{100}\mathrm{d}x+\int \frac{65247x}{50}\mathrm{d}x+\int -\frac{1058903x^{2}}{100}\mathrm{d}x+\int -\frac{244258x^{3}}{25}\mathrm{d}x+\int \frac{1044484x^{4}}{25}\mathrm{d}x
ಪದದ ಮೂಲಕ ಮೊತ್ತ ಪದವನ್ನು ಸಂಯೋಜಿಸಿ.
\int \frac{74529}{100}\mathrm{d}x+\frac{65247\int x\mathrm{d}x}{50}-\frac{1058903\int x^{2}\mathrm{d}x}{100}-\frac{244258\int x^{3}\mathrm{d}x}{25}+\frac{1044484\int x^{4}\mathrm{d}x}{25}
ಪ್ರತಿ ಪದಗಳಲ್ಲಿ ಸ್ಧಿರತೆಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\frac{74529x}{100}+\frac{65247\int x\mathrm{d}x}{50}-\frac{1058903\int x^{2}\mathrm{d}x}{100}-\frac{244258\int x^{3}\mathrm{d}x}{25}+\frac{1044484\int x^{4}\mathrm{d}x}{25}
ಸಾಮಾನ್ಯ ಅವಿಭಾಜ್ಯಗಳ ನಿಯಮ \int a\mathrm{d}x=ax ಕೋಷ್ಟಕ ಬಳಸಿ \frac{74529}{100} ಅವಿಭಾಜ್ಯವನ್ನು ಹುಡುಕಿ.
\frac{74529x}{100}+\frac{65247x^{2}}{100}-\frac{1058903\int x^{2}\mathrm{d}x}{100}-\frac{244258\int x^{3}\mathrm{d}x}{25}+\frac{1044484\int x^{4}\mathrm{d}x}{25}
k\neq -1 ಕ್ಕಾಗಿ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ಇರುವುದರಿಂದ, \int x\mathrm{d}x ಅನ್ನು \frac{x^{2}}{2} ನೊಂದಿಗೆ ಬದಲಾಯಿಸಿ. \frac{x^{2}}{2} ಅನ್ನು \frac{65247}{50} ಬಾರಿ ಗುಣಿಸಿ.
\frac{74529x}{100}+\frac{65247x^{2}}{100}-\frac{1058903x^{3}}{300}-\frac{244258\int x^{3}\mathrm{d}x}{25}+\frac{1044484\int x^{4}\mathrm{d}x}{25}
k\neq -1 ಕ್ಕಾಗಿ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ಇರುವುದರಿಂದ, \int x^{2}\mathrm{d}x ಅನ್ನು \frac{x^{3}}{3} ನೊಂದಿಗೆ ಬದಲಾಯಿಸಿ. \frac{x^{3}}{3} ಅನ್ನು -\frac{1058903}{100} ಬಾರಿ ಗುಣಿಸಿ.
\frac{74529x}{100}+\frac{65247x^{2}}{100}-\frac{1058903x^{3}}{300}-\frac{122129x^{4}}{50}+\frac{1044484\int x^{4}\mathrm{d}x}{25}
k\neq -1 ಕ್ಕಾಗಿ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ಇರುವುದರಿಂದ, \int x^{3}\mathrm{d}x ಅನ್ನು \frac{x^{4}}{4} ನೊಂದಿಗೆ ಬದಲಾಯಿಸಿ. \frac{x^{4}}{4} ಅನ್ನು -\frac{244258}{25} ಬಾರಿ ಗುಣಿಸಿ.
\frac{74529x}{100}+\frac{65247x^{2}}{100}-\frac{1058903x^{3}}{300}-\frac{122129x^{4}}{50}+\frac{1044484x^{5}}{125}
k\neq -1 ಕ್ಕಾಗಿ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ಇರುವುದರಿಂದ, \int x^{4}\mathrm{d}x ಅನ್ನು \frac{x^{5}}{5} ನೊಂದಿಗೆ ಬದಲಾಯಿಸಿ. \frac{x^{5}}{5} ಅನ್ನು \frac{1044484}{25} ಬಾರಿ ಗುಣಿಸಿ.
\frac{74529x}{100}+\frac{65247x^{2}}{100}-\frac{1058903x^{3}}{300}-\frac{122129x^{4}}{50}+\frac{1044484x^{5}}{125}+С
ಒಂದು ವೇಳೆ F\left(x\right) ಎನ್ನುವುದು f\left(x\right) ರ ಪ್ರತ್ಯುತ್ಪನ್ನವಾಗಿದ್ದರೆ, f\left(x\right) ರ ಪ್ರತ್ಯುತ್ಪನ್ನಗಳ ಎಲ್ಲಾ ಸಮೂಹವನ್ನು F\left(x\right)+C ನೀಡುತ್ತದೆ. ಆದ್ದರಿಂದ, ಫಲಿತಾಂಶಕ್ಕೆ C\in \mathrm{R} ಏಕೀಕರಣದ ಸ್ಥಿರತೆಯನ್ನು ಸೇರಿಸಿ.