ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image
ವ್ಯತ್ಯಾಸ w.r.t. x
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\int \left(x^{2}\right)^{3}+6\left(x^{2}\right)^{2}+12x^{2}+8\mathrm{d}x
\left(x^{2}+2\right)^{3} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} ಬಳಸಿ.
\int x^{6}+6\left(x^{2}\right)^{2}+12x^{2}+8\mathrm{d}x
ಸಂಖ್ಯೆಯ ಘಾತವನ್ನು ಮತ್ತೊಂದು ಘಾತಕ್ಕೆ ಹೆಚ್ಚಿಸಲು, ಘಾತಾಂಕಗಳನ್ನು ಗುಣಿಸಿ. 6 ಪಡೆಯಲು 2 ಮತ್ತು 3 ಗುಣಿಸಿ.
\int x^{6}+6x^{4}+12x^{2}+8\mathrm{d}x
ಸಂಖ್ಯೆಯ ಘಾತವನ್ನು ಮತ್ತೊಂದು ಘಾತಕ್ಕೆ ಹೆಚ್ಚಿಸಲು, ಘಾತಾಂಕಗಳನ್ನು ಗುಣಿಸಿ. 4 ಪಡೆಯಲು 2 ಮತ್ತು 2 ಗುಣಿಸಿ.
\int x^{6}\mathrm{d}x+\int 6x^{4}\mathrm{d}x+\int 12x^{2}\mathrm{d}x+\int 8\mathrm{d}x
ಪದದ ಮೂಲಕ ಮೊತ್ತ ಪದವನ್ನು ಸಂಯೋಜಿಸಿ.
\int x^{6}\mathrm{d}x+6\int x^{4}\mathrm{d}x+12\int x^{2}\mathrm{d}x+\int 8\mathrm{d}x
ಪ್ರತಿ ಪದಗಳಲ್ಲಿ ಸ್ಧಿರತೆಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\frac{x^{7}}{7}+6\int x^{4}\mathrm{d}x+12\int x^{2}\mathrm{d}x+\int 8\mathrm{d}x
k\neq -1 ಕ್ಕಾಗಿ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ಇರುವುದರಿಂದ, \int x^{6}\mathrm{d}x ಅನ್ನು \frac{x^{7}}{7} ನೊಂದಿಗೆ ಬದಲಾಯಿಸಿ.
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+12\int x^{2}\mathrm{d}x+\int 8\mathrm{d}x
k\neq -1 ಕ್ಕಾಗಿ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ಇರುವುದರಿಂದ, \int x^{4}\mathrm{d}x ಅನ್ನು \frac{x^{5}}{5} ನೊಂದಿಗೆ ಬದಲಾಯಿಸಿ. \frac{x^{5}}{5} ಅನ್ನು 6 ಬಾರಿ ಗುಣಿಸಿ.
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+4x^{3}+\int 8\mathrm{d}x
k\neq -1 ಕ್ಕಾಗಿ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ಇರುವುದರಿಂದ, \int x^{2}\mathrm{d}x ಅನ್ನು \frac{x^{3}}{3} ನೊಂದಿಗೆ ಬದಲಾಯಿಸಿ. \frac{x^{3}}{3} ಅನ್ನು 12 ಬಾರಿ ಗುಣಿಸಿ.
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+4x^{3}+8x
ಸಾಮಾನ್ಯ ಅವಿಭಾಜ್ಯಗಳ ನಿಯಮ \int a\mathrm{d}x=ax ಕೋಷ್ಟಕ ಬಳಸಿ 8 ಅವಿಭಾಜ್ಯವನ್ನು ಹುಡುಕಿ.
8x+4x^{3}+\frac{6x^{5}}{5}+\frac{x^{7}}{7}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
8x+4x^{3}+\frac{6x^{5}}{5}+\frac{x^{7}}{7}+С
ಒಂದು ವೇಳೆ F\left(x\right) ಎನ್ನುವುದು f\left(x\right) ರ ಪ್ರತ್ಯುತ್ಪನ್ನವಾಗಿದ್ದರೆ, f\left(x\right) ರ ಪ್ರತ್ಯುತ್ಪನ್ನಗಳ ಎಲ್ಲಾ ಸಮೂಹವನ್ನು F\left(x\right)+C ನೀಡುತ್ತದೆ. ಆದ್ದರಿಂದ, ಫಲಿತಾಂಶಕ್ಕೆ C\in \mathrm{R} ಏಕೀಕರಣದ ಸ್ಥಿರತೆಯನ್ನು ಸೇರಿಸಿ.