ಮೌಲ್ಯಮಾಪನ
2\sin(x)+6\cos(x)+С
ವ್ಯತ್ಯಾಸ w.r.t. x
2\left(\cos(x)-3\sin(x)\right)
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\int 2\cos(x)\mathrm{d}x+\int -6\sin(x)\mathrm{d}x
ಪದದ ಮೂಲಕ ಮೊತ್ತ ಪದವನ್ನು ಸಂಯೋಜಿಸಿ.
2\left(\int \cos(x)\mathrm{d}x-3\int \sin(x)\mathrm{d}x\right)
ಪ್ರತಿ ಪದಗಳಲ್ಲಿ ಸ್ಧಿರತೆಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
2\left(\sin(x)-3\int \sin(x)\mathrm{d}x\right)
ಸಾಮಾನ್ಯ ಅವಿಭಾಜ್ಯಗಳ ಕೋಷ್ಟಕದಿಂದ \int \cos(x)\mathrm{d}x=\sin(x) ಬಳಸಿ ಫಲಿತಾಂಶವನ್ನು ಪಡೆಯಿರಿ.
2\left(\sin(x)+3\cos(x)\right)
ಸಾಮಾನ್ಯ ಅವಿಭಾಜ್ಯಗಳ ಕೋಷ್ಟಕದಿಂದ \int \sin(x)\mathrm{d}x=-\cos(x) ಬಳಸಿ ಫಲಿತಾಂಶವನ್ನು ಪಡೆಯಿರಿ. -\cos(x) ಅನ್ನು -6 ಬಾರಿ ಗುಣಿಸಿ.
2\sin(x)+6\cos(x)+С
ಒಂದು ವೇಳೆ F\left(x\right) ಎನ್ನುವುದು f\left(x\right) ರ ಪ್ರತ್ಯುತ್ಪನ್ನವಾಗಿದ್ದರೆ, f\left(x\right) ರ ಪ್ರತ್ಯುತ್ಪನ್ನಗಳ ಎಲ್ಲಾ ಸಮೂಹವನ್ನು F\left(x\right)+C ನೀಡುತ್ತದೆ. ಆದ್ದರಿಂದ, ಫಲಿತಾಂಶಕ್ಕೆ C\in \mathrm{R} ಏಕೀಕರಣದ ಸ್ಥಿರತೆಯನ್ನು ಸೇರಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}