ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image
ವ್ಯತ್ಯಾಸ w.r.t. y
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\left(y^{1}\right)^{1}\times \frac{1}{6y^{2}}
ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ಸರಳೀಕೃತಗೊಳಿಸಲು ಘಾತಾಂಕಗಳ ನಿಯಮಗಳನ್ನು ಬಳಿಸಿ.
1^{1}\left(y^{1}\right)^{1}\times \frac{1}{6}\times \frac{1}{y^{2}}
ಘಾತಕ್ಕೆ ಎರಡು ಅಥವಾ ಅದಕ್ಕಿಂತ ಹೆಚ್ಚಿನ ಸಂಖ್ಯೆಗಳ ಉತ್ಪನ್ನವನ್ನು ಹೆಚ್ಚಿಸಲು, ಘಾತಕ್ಕೆ ಪ್ರತಿ ಸಂಖ್ಯೆಯನ್ನು ಹೆಚ್ಚಿಸಿ ಹಾಗೂ ಅದರ ಉತ್ಪನ್ನವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
1^{1}\times \frac{1}{6}\left(y^{1}\right)^{1}\times \frac{1}{y^{2}}
ಗುಣಾಕಾರ ಪರಿವರ್ತನೀಯ ಗುಣ ಬಳಸಿ.
1^{1}\times \frac{1}{6}y^{1}y^{2\left(-1\right)}
ಸಂಖ್ಯೆಯ ಘಾತವನ್ನು ಮತ್ತೊಂದು ಘಾತಕ್ಕೆ ಹೆಚ್ಚಿಸಲು, ಘಾತಾಂಕಗಳನ್ನು ಗುಣಿಸಿ.
1^{1}\times \frac{1}{6}y^{1}y^{-2}
-1 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
1^{1}\times \frac{1}{6}y^{1-2}
ಒಂದೇ ಆಧಾರ ಸಂಖ್ಯೆಯ ಘಾತಗಳನ್ನು ಗುಣಿಸಲು ಅದರ ಘಾತಾಂಕಗಳನ್ನು ಸೇರಿಸಿ.
1^{1}\times \frac{1}{6}\times \frac{1}{y}
1 ಮತ್ತು -2 ಘಾತಾಂಕಗಳನ್ನು ಸೇರಿಸಿ.
\frac{1}{6}\times \frac{1}{y}
-1 ಘಾತಕ್ಕೆ 6 ಹೆಚ್ಚಿಸಿ.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{1}{6}y^{1-2})
ಒಂದೇ ಆಧಾರ ಸಂಖ್ಯೆಯ ಘಾತಗಳನ್ನು ಭಾಗಿಸಲು, ಸಂಖ್ಯಾಕಾರದ ಘಾತದಿಂದ ಛೇದದ ಘಾತವನ್ನು ಕಳೆಯಿರಿ.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{1}{6}\times \frac{1}{y})
ಅಂಕಗಣಿತ ಮಾಡಿ.
-\frac{1}{6}y^{-1-1}
ಬಹುಪದೀಯದ ವ್ಯುತ್ಪತ್ತಿಯು ಅದರ ಪದಗಳ ವ್ಯುತ್ಪತ್ತಿಗಳ ಮೊತ್ತವಾಗಿದೆ. ಯಾವುದೇ ಸ್ಥಿರ ಪದದ ವ್ಯುತ್ಪತ್ತಿಯು 0 ಆಗಿದೆ. ax^{n} ನ ವ್ಯುತ್ಪತ್ತಿಯು nax^{n-1} ಆಗಿದೆ.
-\frac{1}{6}y^{-2}
ಅಂಕಗಣಿತ ಮಾಡಿ.