ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\frac{8}{2-\sqrt{2}}
4 ರ ವರ್ಗಮೂಲವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 2 ಪಡೆಯಿರಿ.
\frac{8\left(2+\sqrt{2}\right)}{\left(2-\sqrt{2}\right)\left(2+\sqrt{2}\right)}
\frac{8}{2-\sqrt{2}} ಅನ್ನು ಗುಣಿಸುವ ಮೂಲಕ ಛೇದವನ್ನು ಮತ್ತು 2+\sqrt{2} ಮೂಲಕ ಛೇದ ಮತ್ತು ಅಂಶವನ್ನು ತರ್ಕಬದ್ಧವಾಗಿಸಿ.
\frac{8\left(2+\sqrt{2}\right)}{2^{2}-\left(\sqrt{2}\right)^{2}}
\left(2-\sqrt{2}\right)\left(2+\sqrt{2}\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{8\left(2+\sqrt{2}\right)}{4-2}
ವರ್ಗ 2. ವರ್ಗ \sqrt{2}.
\frac{8\left(2+\sqrt{2}\right)}{2}
2 ಪಡೆದುಕೊಳ್ಳಲು 4 ದಿಂದ 2 ಕಳೆಯಿರಿ.
4\left(2+\sqrt{2}\right)
4\left(2+\sqrt{2}\right) ಪಡೆಯಲು 2 ರಿಂದ 8\left(2+\sqrt{2}\right) ವಿಭಾಗಿಸಿ.
8+4\sqrt{2}
2+\sqrt{2} ದಿಂದ 4 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.