ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\left(x+6\right)\left(7+x\right)=10\times 2
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ -6 ಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು 10\left(x+6\right), 10,x+6 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
13x+x^{2}+42=10\times 2
7+x ರಿಂದು x+6 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
13x+x^{2}+42=20
20 ಪಡೆದುಕೊಳ್ಳಲು 10 ಮತ್ತು 2 ಗುಣಿಸಿ.
13x+x^{2}+42-20=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 20 ಕಳೆಯಿರಿ.
13x+x^{2}+22=0
22 ಪಡೆದುಕೊಳ್ಳಲು 42 ದಿಂದ 20 ಕಳೆಯಿರಿ.
x^{2}+13x+22=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-13±\sqrt{13^{2}-4\times 22}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ 13 ಮತ್ತು c ಗೆ 22 ಬದಲಿಸಿ.
x=\frac{-13±\sqrt{169-4\times 22}}{2}
ವರ್ಗ 13.
x=\frac{-13±\sqrt{169-88}}{2}
22 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-13±\sqrt{81}}{2}
-88 ಗೆ 169 ಸೇರಿಸಿ.
x=\frac{-13±9}{2}
81 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=-\frac{4}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-13±9}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 9 ಗೆ -13 ಸೇರಿಸಿ.
x=-2
2 ದಿಂದ -4 ಭಾಗಿಸಿ.
x=-\frac{22}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-13±9}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -13 ದಿಂದ 9 ಕಳೆಯಿರಿ.
x=-11
2 ದಿಂದ -22 ಭಾಗಿಸಿ.
x=-2 x=-11
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
\left(x+6\right)\left(7+x\right)=10\times 2
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ -6 ಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು 10\left(x+6\right), 10,x+6 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
13x+x^{2}+42=10\times 2
7+x ರಿಂದು x+6 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
13x+x^{2}+42=20
20 ಪಡೆದುಕೊಳ್ಳಲು 10 ಮತ್ತು 2 ಗುಣಿಸಿ.
13x+x^{2}=20-42
ಎರಡೂ ಕಡೆಗಳಿಂದ 42 ಕಳೆಯಿರಿ.
13x+x^{2}=-22
-22 ಪಡೆದುಕೊಳ್ಳಲು 20 ದಿಂದ 42 ಕಳೆಯಿರಿ.
x^{2}+13x=-22
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
x^{2}+13x+\left(\frac{13}{2}\right)^{2}=-22+\left(\frac{13}{2}\right)^{2}
\frac{13}{2} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ 13 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{13}{2} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+13x+\frac{169}{4}=-22+\frac{169}{4}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{13}{2} ವರ್ಗಗೊಳಿಸಿ.
x^{2}+13x+\frac{169}{4}=\frac{81}{4}
\frac{169}{4} ಗೆ -22 ಸೇರಿಸಿ.
\left(x+\frac{13}{2}\right)^{2}=\frac{81}{4}
ಅಪವರ್ತನ x^{2}+13x+\frac{169}{4}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{13}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{13}{2}=\frac{9}{2} x+\frac{13}{2}=-\frac{9}{2}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=-2 x=-11
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{13}{2} ಕಳೆಯಿರಿ.