ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image
ವ್ಯತ್ಯಾಸ w.r.t. x
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\frac{5\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{6\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. x+1 ಮತ್ತು x-1 ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು \left(x-1\right)\left(x+1\right) ಆಗಿದೆ. \frac{x-1}{x-1} ಅನ್ನು \frac{5}{x+1} ಬಾರಿ ಗುಣಿಸಿ. \frac{x+1}{x+1} ಅನ್ನು \frac{6}{x-1} ಬಾರಿ ಗುಣಿಸಿ.
\frac{5\left(x-1\right)+6\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}
\frac{5\left(x-1\right)}{\left(x-1\right)\left(x+1\right)} ಮತ್ತು \frac{6\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
\frac{5x-5+6x+6}{\left(x-1\right)\left(x+1\right)}
5\left(x-1\right)+6\left(x+1\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{11x+1}{\left(x-1\right)\left(x+1\right)}
5x-5+6x+6 ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{11x+1}{x^{2}-1}
\left(x-1\right)\left(x+1\right) ವಿಸ್ತರಿಸಿ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{6\left(x+1\right)}{\left(x-1\right)\left(x+1\right)})
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. x+1 ಮತ್ತು x-1 ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು \left(x-1\right)\left(x+1\right) ಆಗಿದೆ. \frac{x-1}{x-1} ಅನ್ನು \frac{5}{x+1} ಬಾರಿ ಗುಣಿಸಿ. \frac{x+1}{x+1} ಅನ್ನು \frac{6}{x-1} ಬಾರಿ ಗುಣಿಸಿ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5\left(x-1\right)+6\left(x+1\right)}{\left(x-1\right)\left(x+1\right)})
\frac{5\left(x-1\right)}{\left(x-1\right)\left(x+1\right)} ಮತ್ತು \frac{6\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x-5+6x+6}{\left(x-1\right)\left(x+1\right)})
5\left(x-1\right)+6\left(x+1\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{11x+1}{\left(x-1\right)\left(x+1\right)})
5x-5+6x+6 ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{11x+1}{x^{2}-1^{2}})
\left(x-1\right)\left(x+1\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{11x+1}{x^{2}-1})
2 ನ ಘಾತಕ್ಕೆ 1 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 1 ಪಡೆಯಿರಿ.
\frac{\left(x^{2}-1\right)\frac{\mathrm{d}}{\mathrm{d}x}(11x^{1}+1)-\left(11x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-1)}{\left(x^{2}-1\right)^{2}}
ಯಾವುದೇ ಎರಡು ವ್ಯತ್ಯಾಸವಿಲ್ಲದ ಕಾರ್ಯಗಳಿಗೆ, ಎರಡು ಕಾರ್ಯಗಳ ಭಾಗಲಬ್ಧ ವ್ಯುತ್ಪನ್ನವು ಸಂಖ್ಯಾಕಾರ ವ್ಯುತ್ಪನ್ನದ ಛೇದದ ಸಮಯವನ್ನು ಛೇದದ ವ್ಯುತ್ಪನ್ನದ ಸಂಖ್ಯಾಕಾರ ಸಮಯದಲ್ಲಿ ವ್ಯವಕಲಿಸುತ್ತದೆ, ಎಲ್ಲವನ್ನು ವರ್ಗಮಾಡಲಾದ ಛೇದದಿಂದ ವಿಭಜಿಸಲಾಗಿದೆ.
\frac{\left(x^{2}-1\right)\times 11x^{1-1}-\left(11x^{1}+1\right)\times 2x^{2-1}}{\left(x^{2}-1\right)^{2}}
ಬಹುಪದೀಯದ ವ್ಯುತ್ಪತ್ತಿಯು ಅದರ ಪದಗಳ ವ್ಯುತ್ಪತ್ತಿಗಳ ಮೊತ್ತವಾಗಿದೆ. ಯಾವುದೇ ಸ್ಥಿರ ಪದದ ವ್ಯುತ್ಪತ್ತಿಯು 0 ಆಗಿದೆ. ax^{n} ನ ವ್ಯುತ್ಪತ್ತಿಯು nax^{n-1} ಆಗಿದೆ.
\frac{\left(x^{2}-1\right)\times 11x^{0}-\left(11x^{1}+1\right)\times 2x^{1}}{\left(x^{2}-1\right)^{2}}
ಅಂಕಗಣಿತ ಮಾಡಿ.
\frac{x^{2}\times 11x^{0}-11x^{0}-\left(11x^{1}\times 2x^{1}+2x^{1}\right)}{\left(x^{2}-1\right)^{2}}
ವಿಭಾಜಕ ಗುಣಲಕ್ಷಣ ಬಳಸಿಕೊಂಡು ವಿಸ್ತರಿಸಿ.
\frac{11x^{2}-11x^{0}-\left(11\times 2x^{1+1}+2x^{1}\right)}{\left(x^{2}-1\right)^{2}}
ಒಂದೇ ಆಧಾರ ಸಂಖ್ಯೆಯ ಘಾತಗಳನ್ನು ಗುಣಿಸಲು ಅದರ ಘಾತಾಂಕಗಳನ್ನು ಸೇರಿಸಿ.
\frac{11x^{2}-11x^{0}-\left(22x^{2}+2x^{1}\right)}{\left(x^{2}-1\right)^{2}}
ಅಂಕಗಣಿತ ಮಾಡಿ.
\frac{11x^{2}-11x^{0}-22x^{2}-2x^{1}}{\left(x^{2}-1\right)^{2}}
ಅನಗತ್ಯವಾದ ಆವರಣ ಚಿಹ್ನೆಗಳನ್ನು ತೆಗೆದುಹಾಕಿ.
\frac{\left(11-22\right)x^{2}-11x^{0}-2x^{1}}{\left(x^{2}-1\right)^{2}}
ಪದಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{-11x^{2}-11x^{0}-2x^{1}}{\left(x^{2}-1\right)^{2}}
11 ದಿಂದ 22 ಕಳೆಯಿರಿ.
\frac{-11x^{2}-11x^{0}-2x}{\left(x^{2}-1\right)^{2}}
ಯಾವುದೇ ಪದಕ್ಕೆ t, t^{1}=t.
\frac{-11x^{2}-11-2x}{\left(x^{2}-1\right)^{2}}
0, t^{0}=1 ಹೊರತುಪಡಿಸಿ ಯಾವುದೇ ಪದ t ಗೆ.