ಮೌಲ್ಯಮಾಪನ
\frac{\sqrt{5}-25}{20}\approx -1.138196601
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\frac{3\sqrt{5}}{\left(\sqrt{5}\right)^{2}}-\frac{2+\sqrt{5}}{3\sqrt{5}-5}
\frac{3}{\sqrt{5}} ಅನ್ನು ಗುಣಿಸುವ ಮೂಲಕ ಛೇದವನ್ನು ಮತ್ತು \sqrt{5} ಮೂಲಕ ಛೇದ ಮತ್ತು ಅಂಶವನ್ನು ತರ್ಕಬದ್ಧವಾಗಿಸಿ.
\frac{3\sqrt{5}}{5}-\frac{2+\sqrt{5}}{3\sqrt{5}-5}
\sqrt{5} ವರ್ಗವು 5 ಆಗಿದೆ.
\frac{3\sqrt{5}}{5}-\frac{\left(2+\sqrt{5}\right)\left(3\sqrt{5}+5\right)}{\left(3\sqrt{5}-5\right)\left(3\sqrt{5}+5\right)}
\frac{2+\sqrt{5}}{3\sqrt{5}-5} ಅನ್ನು ಗುಣಿಸುವ ಮೂಲಕ ಛೇದವನ್ನು ಮತ್ತು 3\sqrt{5}+5 ಮೂಲಕ ಛೇದ ಮತ್ತು ಅಂಶವನ್ನು ತರ್ಕಬದ್ಧವಾಗಿಸಿ.
\frac{3\sqrt{5}}{5}-\frac{\left(2+\sqrt{5}\right)\left(3\sqrt{5}+5\right)}{\left(3\sqrt{5}\right)^{2}-5^{2}}
\left(3\sqrt{5}-5\right)\left(3\sqrt{5}+5\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\sqrt{5}}{5}-\frac{\left(2+\sqrt{5}\right)\left(3\sqrt{5}+5\right)}{3^{2}\left(\sqrt{5}\right)^{2}-5^{2}}
\left(3\sqrt{5}\right)^{2} ವಿಸ್ತರಿಸಿ.
\frac{3\sqrt{5}}{5}-\frac{\left(2+\sqrt{5}\right)\left(3\sqrt{5}+5\right)}{9\left(\sqrt{5}\right)^{2}-5^{2}}
2 ನ ಘಾತಕ್ಕೆ 3 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 9 ಪಡೆಯಿರಿ.
\frac{3\sqrt{5}}{5}-\frac{\left(2+\sqrt{5}\right)\left(3\sqrt{5}+5\right)}{9\times 5-5^{2}}
\sqrt{5} ವರ್ಗವು 5 ಆಗಿದೆ.
\frac{3\sqrt{5}}{5}-\frac{\left(2+\sqrt{5}\right)\left(3\sqrt{5}+5\right)}{45-5^{2}}
45 ಪಡೆದುಕೊಳ್ಳಲು 9 ಮತ್ತು 5 ಗುಣಿಸಿ.
\frac{3\sqrt{5}}{5}-\frac{\left(2+\sqrt{5}\right)\left(3\sqrt{5}+5\right)}{45-25}
2 ನ ಘಾತಕ್ಕೆ 5 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 25 ಪಡೆಯಿರಿ.
\frac{3\sqrt{5}}{5}-\frac{\left(2+\sqrt{5}\right)\left(3\sqrt{5}+5\right)}{20}
20 ಪಡೆದುಕೊಳ್ಳಲು 45 ದಿಂದ 25 ಕಳೆಯಿರಿ.
\frac{4\times 3\sqrt{5}}{20}-\frac{\left(2+\sqrt{5}\right)\left(3\sqrt{5}+5\right)}{20}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. 5 ಮತ್ತು 20 ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು 20 ಆಗಿದೆ. \frac{4}{4} ಅನ್ನು \frac{3\sqrt{5}}{5} ಬಾರಿ ಗುಣಿಸಿ.
\frac{4\times 3\sqrt{5}-\left(2+\sqrt{5}\right)\left(3\sqrt{5}+5\right)}{20}
\frac{4\times 3\sqrt{5}}{20} ಮತ್ತು \frac{\left(2+\sqrt{5}\right)\left(3\sqrt{5}+5\right)}{20} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
\frac{12\sqrt{5}-6\sqrt{5}-10-15-5\sqrt{5}}{20}
4\times 3\sqrt{5}-\left(2+\sqrt{5}\right)\left(3\sqrt{5}+5\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{\sqrt{5}-25}{20}
12\sqrt{5}-6\sqrt{5}-10-15-5\sqrt{5} ನಲ್ಲಿ ಲೆಕ್ಕಾಚಾರಗಳನ್ನು ಮಾಡಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}