ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image
ನೈಜ ಭಾಗ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\frac{2-2i}{1-i}
2 ಪಡೆದುಕೊಳ್ಳಲು 1 ಮತ್ತು 1 ಸೇರಿಸಿ.
\frac{\left(2-2i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}
ಛೇದದ ಸಂಕೀರ್ಣ ಸಂಯುಗ್ಮದ ಮೂಲಕ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದ ಎರಡನ್ನೂ ಗುಣಿಸಿ, 1+i.
\frac{\left(2-2i\right)\left(1+i\right)}{1^{2}-i^{2}}
ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2-2i\right)\left(1+i\right)}{2}
ವ್ಯಾಖ್ಯಾನದ ಮೂಲಕ, i^{2} ಎನ್ನುವುದು -1 ಆಗಿದೆ. ಛೇದವನ್ನು ಲೆಕ್ಕಹಾಕಿ.
\frac{2\times 1+2i-2i-2i^{2}}{2}
ನೀವು ದ್ವಿಪದಗಳನ್ನು ಗುಣಿಸಿದಂತೆ 2-2i ಮತ್ತು 1+i ಸಂಕೀರ್ಣ ಸಂಖ್ಯೆಗಳನ್ನು ಗುಣಿಸಿ.
\frac{2\times 1+2i-2i-2\left(-1\right)}{2}
ವ್ಯಾಖ್ಯಾನದ ಮೂಲಕ, i^{2} ಎನ್ನುವುದು -1 ಆಗಿದೆ.
\frac{2+2i-2i+2}{2}
2\times 1+2i-2i-2\left(-1\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{2+2+\left(2-2\right)i}{2}
2+2i-2i+2 ನಲ್ಲಿ ನೈಜ ಮತ್ತು ಕಾಲ್ಪನಿಕ ಭಾಗಗಳನ್ನು ಕೂಡಿಸಿ.
\frac{4}{2}
2+2+\left(2-2\right)i ನಲ್ಲಿ ಸಂಕಲನ ಮಾಡಿ.
2
2 ಪಡೆಯಲು 2 ರಿಂದ 4 ವಿಭಾಗಿಸಿ.
Re(\frac{2-2i}{1-i})
2 ಪಡೆದುಕೊಳ್ಳಲು 1 ಮತ್ತು 1 ಸೇರಿಸಿ.
Re(\frac{\left(2-2i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)})
\frac{2-2i}{1-i} ನ ಗಣಕ ಮತ್ತು ಛೇದವನ್ನು, 1+i ಗಣಕದ ಸಂಕೀರ್ಣ ಸಂಯೋಗದಿಂದ ಗುಣಿಸಿ.
Re(\frac{\left(2-2i\right)\left(1+i\right)}{1^{2}-i^{2}})
ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(2-2i\right)\left(1+i\right)}{2})
ವ್ಯಾಖ್ಯಾನದ ಮೂಲಕ, i^{2} ಎನ್ನುವುದು -1 ಆಗಿದೆ. ಛೇದವನ್ನು ಲೆಕ್ಕಹಾಕಿ.
Re(\frac{2\times 1+2i-2i-2i^{2}}{2})
ನೀವು ದ್ವಿಪದಗಳನ್ನು ಗುಣಿಸಿದಂತೆ 2-2i ಮತ್ತು 1+i ಸಂಕೀರ್ಣ ಸಂಖ್ಯೆಗಳನ್ನು ಗುಣಿಸಿ.
Re(\frac{2\times 1+2i-2i-2\left(-1\right)}{2})
ವ್ಯಾಖ್ಯಾನದ ಮೂಲಕ, i^{2} ಎನ್ನುವುದು -1 ಆಗಿದೆ.
Re(\frac{2+2i-2i+2}{2})
2\times 1+2i-2i-2\left(-1\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
Re(\frac{2+2+\left(2-2\right)i}{2})
2+2i-2i+2 ನಲ್ಲಿ ನೈಜ ಮತ್ತು ಕಾಲ್ಪನಿಕ ಭಾಗಗಳನ್ನು ಕೂಡಿಸಿ.
Re(\frac{4}{2})
2+2+\left(2-2\right)i ನಲ್ಲಿ ಸಂಕಲನ ಮಾಡಿ.
Re(2)
2 ಪಡೆಯಲು 2 ರಿಂದ 4 ವಿಭಾಗಿಸಿ.
2
2 ನ ನೈಜ ಭಾಗವು 2 ಆಗಿದೆ.