ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

3\times 2+3\left(x+2\right)\left(-\frac{1}{3}\right)=\left(x+2\right)x
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ -2 ಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು 3\left(x+2\right), x+2,3 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
6+3\left(x+2\right)\left(-\frac{1}{3}\right)=\left(x+2\right)x
6 ಪಡೆದುಕೊಳ್ಳಲು 3 ಮತ್ತು 2 ಗುಣಿಸಿ.
6-\left(x+2\right)=\left(x+2\right)x
-1 ಪಡೆದುಕೊಳ್ಳಲು 3 ಮತ್ತು -\frac{1}{3} ಗುಣಿಸಿ.
6-x-2=\left(x+2\right)x
x+2 ವಿರುದ್ಧವನ್ನು ಹುಡುಕಲು, ಪ್ರತಿ ಪದದ ವಿರುದ್ಧ ಪದವನ್ನು ಹುಡುಕಿ.
4-x=\left(x+2\right)x
4 ಪಡೆದುಕೊಳ್ಳಲು 6 ದಿಂದ 2 ಕಳೆಯಿರಿ.
4-x=x^{2}+2x
x ದಿಂದ x+2 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
4-x-x^{2}=2x
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{2} ಕಳೆಯಿರಿ.
4-x-x^{2}-2x=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 2x ಕಳೆಯಿರಿ.
4-3x-x^{2}=0
-3x ಪಡೆದುಕೊಳ್ಳಲು -x ಮತ್ತು -2x ಕೂಡಿಸಿ.
-x^{2}-3x+4=0
ಬಹುಪದೋಕ್ತಿಯನ್ನು ಪ್ರಮಾಣಿತ ರೂಪದಲ್ಲಿ ಇರಿಸುವ ಮೂಲಕ ಅದನ್ನು ಮರುಆಯೋಜಿಸಿ. ನಿಯಮಗಳನ್ನು ಅಧಿಕದಿಂದ ಕಡಿಮೆ ಘಾತದ ಕ್ರಮದಲ್ಲಿ ಇರಿಸಿ.
a+b=-3 ab=-4=-4
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಎಡಭಾಗದಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಎಡಭಾಗವನ್ನು -x^{2}+ax+bx+4 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
1,-4 2,-2
ab ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ವಿರುದ್ಧ ಚಿಹ್ನೆಗಳನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, ಋಣಾತ್ಮಕ ಸಂಖ್ಯೆಯು ಧನಾತ್ಮಕ ಸಂಖ್ಯೆಗಿಂತ ಅಧಿಕ ಪ್ರಮಾಣದ ಪರಿಪೂರ್ಣ ಮೌಲ್ಯವನ್ನು ಹೊಂದಿದೆ. ಉತ್ಪನ್ನ -4 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
1-4=-3 2-2=0
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=1 b=-4
ಪರಿಹಾರವು -3 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(-x^{2}+x\right)+\left(-4x+4\right)
\left(-x^{2}+x\right)+\left(-4x+4\right) ನ ಹಾಗೆ -x^{2}-3x+4 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
x\left(-x+1\right)+4\left(-x+1\right)
ಮೊದಲನೆಯದರಲ್ಲಿ x ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ 4 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(-x+1\right)\left(x+4\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ -x+1 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
x=1 x=-4
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, -x+1=0 ಮತ್ತು x+4=0 ಪರಿಹರಿಸಿ.
3\times 2+3\left(x+2\right)\left(-\frac{1}{3}\right)=\left(x+2\right)x
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ -2 ಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು 3\left(x+2\right), x+2,3 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
6+3\left(x+2\right)\left(-\frac{1}{3}\right)=\left(x+2\right)x
6 ಪಡೆದುಕೊಳ್ಳಲು 3 ಮತ್ತು 2 ಗುಣಿಸಿ.
6-\left(x+2\right)=\left(x+2\right)x
-1 ಪಡೆದುಕೊಳ್ಳಲು 3 ಮತ್ತು -\frac{1}{3} ಗುಣಿಸಿ.
6-x-2=\left(x+2\right)x
x+2 ವಿರುದ್ಧವನ್ನು ಹುಡುಕಲು, ಪ್ರತಿ ಪದದ ವಿರುದ್ಧ ಪದವನ್ನು ಹುಡುಕಿ.
4-x=\left(x+2\right)x
4 ಪಡೆದುಕೊಳ್ಳಲು 6 ದಿಂದ 2 ಕಳೆಯಿರಿ.
4-x=x^{2}+2x
x ದಿಂದ x+2 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
4-x-x^{2}=2x
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{2} ಕಳೆಯಿರಿ.
4-x-x^{2}-2x=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 2x ಕಳೆಯಿರಿ.
4-3x-x^{2}=0
-3x ಪಡೆದುಕೊಳ್ಳಲು -x ಮತ್ತು -2x ಕೂಡಿಸಿ.
-x^{2}-3x+4=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-1\right)\times 4}}{2\left(-1\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -1, b ಗೆ -3 ಮತ್ತು c ಗೆ 4 ಬದಲಿಸಿ.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-1\right)\times 4}}{2\left(-1\right)}
ವರ್ಗ -3.
x=\frac{-\left(-3\right)±\sqrt{9+4\times 4}}{2\left(-1\right)}
-1 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-3\right)±\sqrt{9+16}}{2\left(-1\right)}
4 ಅನ್ನು 4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-3\right)±\sqrt{25}}{2\left(-1\right)}
16 ಗೆ 9 ಸೇರಿಸಿ.
x=\frac{-\left(-3\right)±5}{2\left(-1\right)}
25 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{3±5}{2\left(-1\right)}
-3 ನ ವಿಲೋಮವು 3 ಆಗಿದೆ.
x=\frac{3±5}{-2}
-1 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{8}{-2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{3±5}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 5 ಗೆ 3 ಸೇರಿಸಿ.
x=-4
-2 ದಿಂದ 8 ಭಾಗಿಸಿ.
x=-\frac{2}{-2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{3±5}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 3 ದಿಂದ 5 ಕಳೆಯಿರಿ.
x=1
-2 ದಿಂದ -2 ಭಾಗಿಸಿ.
x=-4 x=1
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
3\times 2+3\left(x+2\right)\left(-\frac{1}{3}\right)=\left(x+2\right)x
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ -2 ಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು 3\left(x+2\right), x+2,3 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
6+3\left(x+2\right)\left(-\frac{1}{3}\right)=\left(x+2\right)x
6 ಪಡೆದುಕೊಳ್ಳಲು 3 ಮತ್ತು 2 ಗುಣಿಸಿ.
6-\left(x+2\right)=\left(x+2\right)x
-1 ಪಡೆದುಕೊಳ್ಳಲು 3 ಮತ್ತು -\frac{1}{3} ಗುಣಿಸಿ.
6-x-2=\left(x+2\right)x
x+2 ವಿರುದ್ಧವನ್ನು ಹುಡುಕಲು, ಪ್ರತಿ ಪದದ ವಿರುದ್ಧ ಪದವನ್ನು ಹುಡುಕಿ.
4-x=\left(x+2\right)x
4 ಪಡೆದುಕೊಳ್ಳಲು 6 ದಿಂದ 2 ಕಳೆಯಿರಿ.
4-x=x^{2}+2x
x ದಿಂದ x+2 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
4-x-x^{2}=2x
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{2} ಕಳೆಯಿರಿ.
4-x-x^{2}-2x=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 2x ಕಳೆಯಿರಿ.
4-3x-x^{2}=0
-3x ಪಡೆದುಕೊಳ್ಳಲು -x ಮತ್ತು -2x ಕೂಡಿಸಿ.
-3x-x^{2}=-4
ಎರಡೂ ಕಡೆಗಳಿಂದ 4 ಕಳೆಯಿರಿ. ಶೂನ್ಯದಿಂದ ಏನನ್ನಾದರೂ ಕಳೆದರೆ ಅದರ ಋಣಾತ್ಮಕವನ್ನು ನೀಡುತ್ತದೆ.
-x^{2}-3x=-4
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
\frac{-x^{2}-3x}{-1}=-\frac{4}{-1}
-1 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\left(-\frac{3}{-1}\right)x=-\frac{4}{-1}
-1 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -1 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+3x=-\frac{4}{-1}
-1 ದಿಂದ -3 ಭಾಗಿಸಿ.
x^{2}+3x=4
-1 ದಿಂದ -4 ಭಾಗಿಸಿ.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=4+\left(\frac{3}{2}\right)^{2}
\frac{3}{2} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ 3 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{3}{2} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+3x+\frac{9}{4}=4+\frac{9}{4}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{3}{2} ವರ್ಗಗೊಳಿಸಿ.
x^{2}+3x+\frac{9}{4}=\frac{25}{4}
\frac{9}{4} ಗೆ 4 ಸೇರಿಸಿ.
\left(x+\frac{3}{2}\right)^{2}=\frac{25}{4}
ಅಪವರ್ತನ x^{2}+3x+\frac{9}{4}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{3}{2}=\frac{5}{2} x+\frac{3}{2}=-\frac{5}{2}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=1 x=-4
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{3}{2} ಕಳೆಯಿರಿ.