ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\left(5x^{2}+1\right)\times 2=x\left(4x+7\right)
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು x\left(5x^{2}+1\right), x,5x^{2}+1 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
10x^{2}+2=x\left(4x+7\right)
2 ದಿಂದ 5x^{2}+1 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
10x^{2}+2=4x^{2}+7x
4x+7 ದಿಂದ x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
10x^{2}+2-4x^{2}=7x
ಎರಡೂ ಕಡೆಗಳಿಂದ 4x^{2} ಕಳೆಯಿರಿ.
6x^{2}+2=7x
6x^{2} ಪಡೆದುಕೊಳ್ಳಲು 10x^{2} ಮತ್ತು -4x^{2} ಕೂಡಿಸಿ.
6x^{2}+2-7x=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 7x ಕಳೆಯಿರಿ.
6x^{2}-7x+2=0
ಬಹುಪದೋಕ್ತಿಯನ್ನು ಪ್ರಮಾಣಿತ ರೂಪದಲ್ಲಿ ಇರಿಸುವ ಮೂಲಕ ಅದನ್ನು ಮರುಆಯೋಜಿಸಿ. ನಿಯಮಗಳನ್ನು ಅಧಿಕದಿಂದ ಕಡಿಮೆ ಘಾತದ ಕ್ರಮದಲ್ಲಿ ಇರಿಸಿ.
a+b=-7 ab=6\times 2=12
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಎಡಭಾಗದಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಎಡಭಾಗವನ್ನು 6x^{2}+ax+bx+2 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
-1,-12 -2,-6 -3,-4
ab ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಒಂದೇ ಚಿಹ್ನೆಯನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಎರಡೂ ಋಣಾತ್ಮಕವಾಗಿವೆ. ಉತ್ಪನ್ನ 12 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
-1-12=-13 -2-6=-8 -3-4=-7
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-4 b=-3
ಪರಿಹಾರವು -7 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(6x^{2}-4x\right)+\left(-3x+2\right)
\left(6x^{2}-4x\right)+\left(-3x+2\right) ನ ಹಾಗೆ 6x^{2}-7x+2 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
2x\left(3x-2\right)-\left(3x-2\right)
ಮೊದಲನೆಯದರಲ್ಲಿ 2x ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ -1 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(3x-2\right)\left(2x-1\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ 3x-2 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
x=\frac{2}{3} x=\frac{1}{2}
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, 3x-2=0 ಮತ್ತು 2x-1=0 ಪರಿಹರಿಸಿ.
\left(5x^{2}+1\right)\times 2=x\left(4x+7\right)
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು x\left(5x^{2}+1\right), x,5x^{2}+1 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
10x^{2}+2=x\left(4x+7\right)
2 ದಿಂದ 5x^{2}+1 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
10x^{2}+2=4x^{2}+7x
4x+7 ದಿಂದ x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
10x^{2}+2-4x^{2}=7x
ಎರಡೂ ಕಡೆಗಳಿಂದ 4x^{2} ಕಳೆಯಿರಿ.
6x^{2}+2=7x
6x^{2} ಪಡೆದುಕೊಳ್ಳಲು 10x^{2} ಮತ್ತು -4x^{2} ಕೂಡಿಸಿ.
6x^{2}+2-7x=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 7x ಕಳೆಯಿರಿ.
6x^{2}-7x+2=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 6\times 2}}{2\times 6}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 6, b ಗೆ -7 ಮತ್ತು c ಗೆ 2 ಬದಲಿಸಿ.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 6\times 2}}{2\times 6}
ವರ್ಗ -7.
x=\frac{-\left(-7\right)±\sqrt{49-24\times 2}}{2\times 6}
6 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-7\right)±\sqrt{49-48}}{2\times 6}
2 ಅನ್ನು -24 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-7\right)±\sqrt{1}}{2\times 6}
-48 ಗೆ 49 ಸೇರಿಸಿ.
x=\frac{-\left(-7\right)±1}{2\times 6}
1 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{7±1}{2\times 6}
-7 ನ ವಿಲೋಮವು 7 ಆಗಿದೆ.
x=\frac{7±1}{12}
6 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{8}{12}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{7±1}{12} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 1 ಗೆ 7 ಸೇರಿಸಿ.
x=\frac{2}{3}
4 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{8}{12} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x=\frac{6}{12}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{7±1}{12} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 7 ದಿಂದ 1 ಕಳೆಯಿರಿ.
x=\frac{1}{2}
6 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{6}{12} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x=\frac{2}{3} x=\frac{1}{2}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
\left(5x^{2}+1\right)\times 2=x\left(4x+7\right)
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು x\left(5x^{2}+1\right), x,5x^{2}+1 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
10x^{2}+2=x\left(4x+7\right)
2 ದಿಂದ 5x^{2}+1 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
10x^{2}+2=4x^{2}+7x
4x+7 ದಿಂದ x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
10x^{2}+2-4x^{2}=7x
ಎರಡೂ ಕಡೆಗಳಿಂದ 4x^{2} ಕಳೆಯಿರಿ.
6x^{2}+2=7x
6x^{2} ಪಡೆದುಕೊಳ್ಳಲು 10x^{2} ಮತ್ತು -4x^{2} ಕೂಡಿಸಿ.
6x^{2}+2-7x=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 7x ಕಳೆಯಿರಿ.
6x^{2}-7x=-2
ಎರಡೂ ಕಡೆಗಳಿಂದ 2 ಕಳೆಯಿರಿ. ಶೂನ್ಯದಿಂದ ಏನನ್ನಾದರೂ ಕಳೆದರೆ ಅದರ ಋಣಾತ್ಮಕವನ್ನು ನೀಡುತ್ತದೆ.
\frac{6x^{2}-7x}{6}=-\frac{2}{6}
6 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}-\frac{7}{6}x=-\frac{2}{6}
6 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 6 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-\frac{7}{6}x=-\frac{1}{3}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{-2}{6} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x^{2}-\frac{7}{6}x+\left(-\frac{7}{12}\right)^{2}=-\frac{1}{3}+\left(-\frac{7}{12}\right)^{2}
-\frac{7}{12} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{7}{6} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{7}{12} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-\frac{7}{6}x+\frac{49}{144}=-\frac{1}{3}+\frac{49}{144}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{7}{12} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-\frac{7}{6}x+\frac{49}{144}=\frac{1}{144}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{49}{144} ಗೆ -\frac{1}{3} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x-\frac{7}{12}\right)^{2}=\frac{1}{144}
ಅಪವರ್ತನ x^{2}-\frac{7}{6}x+\frac{49}{144}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{7}{12}\right)^{2}}=\sqrt{\frac{1}{144}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{7}{12}=\frac{1}{12} x-\frac{7}{12}=-\frac{1}{12}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{2}{3} x=\frac{1}{2}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{7}{12} ಸೇರಿಸಿ.